
2025 MATHEMATICA BOHEMICA 9 pp

Online first

SOME ANNIHILATOR IDEALS IN SKEW HURWITZ SERIES RINGS

Amit B. Singh, Deepa Arora

Received June 13, 2024. Published online January 17, 2025.
Communicated by Simion Breaz

Abstract. A ring R has right (left) property (A) if for every finitely generated two-sided
ideal I ⊆ Zl(R) (I ⊆ Zr(R)), there exists nonzero u ∈ R (v ∈ R) such that Iu = 0 (vI = 0).
In this article, we establish a relationship between a ring with property (A) and its skew
Hurwitz series ring (HR,ω), where ω is an endomorphism of R. Also some properties of
strongly right AB ring for skew Hurwitz series rings are studied.
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1. Introduction

Throughout this article, R denotes an associative ring with identity. For any sub-

set P of a ring R, rR(P ) denotes the right annihilator of P in R. According to

Kaplansky [23] if R is a commutative Noetherian ring, then the annihilator of an

ideal I consisting entirely of zero-divisors is nonzero. This result is not true for the

non-Noetherian ring, even if the ideal I is finitely generated. Furthermore, Huckaba

and Keller [18] introduced the concept of a commutative ring with property (A).

A commutative ring R has property (A) if every finitely generated ideal of R consist-

ing entirely of zero-divisors is a nonzero annihilator. This class of rings is quite large

and contains some well known classes of rings. For example: the class of rings whose

prime ideals are maximal [14], the polynomial rings R[x], the class of Noetherian

rings [22] and the rings whose classical rings of quotients are von-Neumann regular.

Initially, Quentel [32] studied the concept of rings with property (A). He used the

term condition (C) instead of property (A). Using property (A), Hinkle and Huck-

aba [15] generalized the concept of Kronecker function rings from integral domain

to rings with zero-divisors. The class of commutative rings with property (A) has

been studied by several authors, see [4], [9], [10], [14], [15], [17], [18], [28], [40]. In
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2007, Hong et al. [17] extended the concept of commutative rings with property (A)

to noncommutative rings. They defined that a ring R has right (left) property (A)

for every finitely generated two-sided ideal I ⊆ Zl(R) (I ⊆ Zr(R)) if there exists

a nonzero u ∈ R (v ∈ R) such that Iu = 0 (vI = 0). A ring R is said to have prop-

erty (A) if R has right and left property (A). They proved some important properties

of a ring with right property (A) and established the following cases:

(1) If R is a reduced ring with finitely many prime ideals, then R has property (A).

(2) If R is a reversible ring and every prime ideal of R is maximal, then R has

property (A).

(3) If R is a biregular ring, then R has property (A).

Moreover, they studied several extensions of rings with property (A) including

matrix rings, polynomial rings R[x] and classical quotient rings. They also raised

following questions:

(1) Does the power series ring R[[x]] over a commutative ring R have property (A)?

(2) If a ring R has right property (A), then does the power series ring R[[x]] over R

have right property (A)?

Hashemi et al. [10] studied the above questions and gave a negative answer to ques-

tion 2 from [10] and showed that there exists a ring R which has right property (A),

while the power series ring R[[x]] does not have right property (A). They answered

question 2 positively when R was reversible and Noetherian. They proved that if R is

reversible and Noetherian, then R[[x]] has property (A). Further, Hashemi et al. [9]

proved that if R is a right Noetherian right duo and an ω-compatible ring, then

the skew power series ring R[[x;ω]] has right property (A). Moreover, they gave the

answer of question 1 in [9] if R is commutative Noetherian. However, they showed

in [9], Example 2.12 that there exists a ring which is noncommutative left and right

Notherian, while R[[x]] does not have right property (A). In this article, we study

the above result of Hashemi et al. [9] to the skew Hurwitz series ring (HR,ω). Here,

we establish a relation between a ring with property (A) and its skew Hurwitz power

series ring (HR,ω), where ω is an endomorphism of R.

We need some standard definitions to understand the main and associated results

of this article. A ring R is called (i) reduced if it has no nonzero nilpotent elements,

(ii) symmetric if for all a, b, c ∈ R, abc = 0 implies acb = 0, (iii) reversible if ab = 0

implies ba = 0 for a, b ∈ R, (iv) semicommutative if for all a, b ∈ R, ab = 0 implies

aRb = 0, (v) right (left) duo if every right (left) ideal is two-sided, (vi) abelian if all

idempotents are central, (vii) biregular if every principal ideal of R is generated by

central idempotents of R and NI if nil(R) forms an ideal.
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2. Skew Hurwitz series rings with property (A)

Rings of formal power series have been interesting as they possess important ap-

plications. One of these is differential algebra [24]. Keigher [25] considered a variant

of the ring of formal power series and studied some of its properties. In [26], he

extended the study of this type of rings and introduced the ring of Hurwitz series

over a commutative ring with identity. Moreover, he showed that the Hurwitz series

ring HR is very closely connected to the base ring R itself if R is of positive charac-

teristic. Recall the construction of Hurwitz series ring from [26], [27]. The elements

of the Hurwitz series HR are sequences of the form a = (an) = (a1, a2, a3, . . .), where

an ∈ R for each n ∈ N ∪ {0}. Addition in HR is point-wise, while the multiplication

of two elements (an) and (bn) in HR is defined by (an)(bn) = (cn), where

cn =
n
∑

k=0

Cn
k akbn−k.

Here, Cn
k is a binomial symbol n!/(k!(n− k)!) for all n > k, where n, k ∈ N∪{0}. This

product is similar to the usual product of formal power series, except the binomial

coefficients Cn
k . This type of product was considered first by Hurwitz [19], and then

by Bochner and Martin [6], Fliess [8] and Taft [39] also. Inspired by the contribution

of Hurwitz, Keigher [26] coined the term ring of Hurwitz series over commutative

rings. After that, a number of authors, see for example [1], [5], [12], [13], [29], [30],

[31], [34], [36], [37], [38], have studied the properties of abstract ring structures of

the skew Hurwitz series ring (HR,ω). Now, we see the construction of the skew

Hurwitz series ring. Let R be a ring and ω : R → R be an endomorphism of R,

and ω(1) = 1. The elements of (HR,ω) are functions f : N ∪ {0} → R. Addition in

(HR,ω) is component-wise. Multiplication is defined for every f, g ∈ (HR,ω) by

fg(p) =

p
∑

k=0

Cp
kf(k)ω

k(g(p− k))

for all p, k ∈ N ∪ {0}.

It can be easily shown that (HR,ω) is a ring with identity h1, defined by

h1(n) =

{

1 if n = 0,

0 if n 6= 1,

where n ∈ N∪{0}. It is clear that R is canonically embedded as a subring of (HR,ω)

via a → ha ∈ (HR,ω), where

ha(n) =

{

a if n = 0,

0 if n > 1.
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For any function f ∈ (HR,ω), supp (f) = {n ∈ N ∪ {0} ; f(n) 6= 0} denotes the

support of f and π(f) denotes the minimal element of supp (f). For any nonempty

subset X of R, we denote:

(HX,ω) = {f ∈ (HR,ω) ; f(n) ∈ X ∪ {0}, n ∈ N ∪ {0}}.

Notice that if we take a skew formal power series f(x) =
∞
∑

i=0

aix
i ∈ R[[x;ω]] with the

function f(n) = an, then the multiplication in skew Hurwitz series (HR,ω) is similar

to the usual product of skew formal power series, except that bionomial coefficients

appear in each term of elements of (HR,ω).

Due to Krempa [27], a monomorphism ω of a ring R is said to be rigid if aω(a) = 0

implies a = 0 for all a ∈ R. A ring R is called ω-rigid if there exists a rigid

endomorphism ω of R. Annin [3] called a ring R to be ω-compatible if for every

a, b ∈ R, ab = 0 if and only if aω(b) = 0. Hashemi and Moussavi [11] gave some

examples of nonrigid ω-compatible rings. They proved the following lemma.

Lemma 2.1. Let ω be an endomorphism of a ring R. Then

(1) if ω is compatible, then ω is injective,

(2) ω is compatible if and only if for all a, b ∈ R, ω(a)b = 0 ⇔ ab = 0,

(3) the following conditions are equivalent:

(a) ω is rigid,

(b) ω is compatible and R is reduced,

(c) for every a ∈ R, ω(a)a = 0 implies that a = 0.

To prove the main result we need to prove the following proposition.

Proposition 2.2. Let R be a right duo and right Noetherian ring which is

ω-compatible and torsion-free as a (Z)-module. If for any f and g ∈ (HR,ω), fg = 0,

there exists r ∈ R such that f(m)g(n)r = 0 for all m,n ∈ N ∪ {0} and g(n)r 6= 0.

P r o o f. Let f, g ∈ (HR,ω) such that fg = 0. Then we have

f(0)g(0) = 0,(2.1a)

f(0)g(1) + f(1)ω(g(0)) = 0,(2.1b)

f(0)g(2) + 2f(1)ω(g(1)) + f(2)ω2(g(0)) = 0,(2.1c)

...(2.1d)

From (2.1a) we have f(0)g(0) = 0. It follows that f(0)Rω(g(0)) = 0 since R

is ω-compatible and semicommutative. Now, multiplying (2.1b) from left by f(0),
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we have (f(0))2g(1) = 0. Then 2(f(0))2Rω(g(1)) = 0 since R is ω-compatible,

semicommutative and torsion-free as a (Z)-module. Now, multiplying (2.1c) from left

by (f(0))2, we get (f(0))2g(2) = 0. Continuing this, we obtain (f(0))n+1g(n) = 0.

Since r.annR(f(0)) ⊆ r.annRω((f(0))) ⊆ r.annR(ω
2(f(0))) ⊆ . . . and R is right

Noetherian, then there exists k > 0 such that r.annR(f(0)
k) = r.annR(f(0)

t) for all

t > k. Therefore f(0)kg(n) = 0 for all n ∈ N ∪ {0}. Suppose k > 0 is the smallest

positive integer such that f(0)kg(n) = 0 for all n ∈ N ∪ {0}, f(0)kF = 0, where

F = {g(0), g(1), g(2), . . . , g(n)}. Then from [9], Lemma 2.6 there exists r0 ∈ R such

that f(0)g(n)r0 = 0 but g(n)r0 6= 0 for all n ∈ N ∪ {0}. Now from equations (2.1a),

(2.1b), (2.1c), . . . and ω-compatibility of R, we have:

f(1)ω(g(0))r0 = 0,(2.2a)

2f(1)ω(g(1))r0 + f(2)ω2(g(0))r0 = 0,(2.2b)

3f(1)ω(g(2))r0 + 3f(2)ω2(g(1))r0 + f(3)ω3(g(0))r0 = 0,(2.2c)

...(2.2d)

Applying the same logic and [9], Lemma 2.6, we obtain that there exists r1 ∈ R

such that f(1)g(n)r0r1 = 0 but g(n)r0r1 6= 0 for all n ∈ N ∪ {0}. Continuing

this process we get r0, r1, r2, . . . , rm ∈ R such that f(m)g(n)r0r1r2 . . . rm = 0 but

g(n)r0r1r2 . . . rm 6= 0 for all m,n ∈ N ∪ {0}. Thus, there exists r = r0r1, r2, . . .,

rm ∈ R such that f(m)g(n)r but g(n)r 6= 0 for all m,n ∈ N ∪ {0}. �

Now, we prove the main result.

Theorem 2.3. Let R be an ω-compatible ring which is torsion-free as a Z-module.

If R is right duo right Noetherian, then (HR,ω) has right property (A).

P r o o f. Let J = 〈f1, f2, . . . , fn〉 be a finitely generated two-sided ideal of

(HR,ω) such that J ⊆ Zl((HR,ω)). Consider I =
〈

n
⋃

i=1

Cfi

〉

, where Cfi is a set

of all the coefficients of fi for all 1 6 i 6 n. Since J ⊆ Zl((HR,ω)), for some

g ∈ (HR,ω), fig = 0 for all 1 6 i 6 n. Thus, from Proposition 2.2 there exists

r ∈ R such that fi(p)g(q)r = 0 but g(q)r 6= 0 for all p, q ∈ N ∪ {0} and 1 6 i 6 n.

Thus, Ig(q)r = 0 but g(q)r 6= 0 for all q ∈ N ∪ {0}. Since R is semi-commutative,

so I is an ideal of R and I ⊆ Zl(R). From [9], Remark 2.3, Zl(R) = ∪Pi, where Pi

is completely prime ideal and pi = l.annR(ci) for a nonzero ci ∈ R. Thus, from [9],

Lemma 2.4 I ⊆ Pi for some i. Therefore Ici = 0. It follows that Jhci = 0, where hci

is a nonzero element of (HR,ω). Hence, skew Hurwitz series ring (HR,ω) has right

property (A). �
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Corollary 2.4. Let R be a ring which is torsion-free as a Z-module. If R is right

duo right Noetherian, then (HR,ω) has right property (A).

P r o o f. Let ω be an identity endomorphism of R, then (HR,ω) ∼= (HR). Since R

is right duo right Noetherian, from Theorem 2.3, (HR) has right property (A). �

In [21] Jacobson stated that a right ideal of R is bounded if it contains a nonzero

ideal of R. Further, Faith [7] generalized this concept and said that a ring R is

strongly right (or left) bounded if every nonzero right (or left) ideal is bounded.

A ring R is said to be strongly bounded if it is both strongly right bounded and

strongly left bounded. After that, Hwang et al. [20] introduced the concept of

a strongly right AB ring, which is a generalization of strongly bounded rings and

semicommutative rings. A ring R is called strongly right (or left) AB if every nonzero

right (or left) annihilator is bounded.

Theorem 2.5. Let R be an ω-compatible ring which is torsion-free as a Z-module.

If R is right duo right Noetherian, then (HR,ω) is a strongly AB ring.

P r o o f. Let A be a nonzero subset of (HR,ω) with r.ann(HR,ω)(A) 6= 0 and Cg

be a set of coefficients of all g ∈ A. Then for a nonzero f ∈ r.ann(HR,ω)(A), gf = 0.

Since R is right duo right Noetherian and ω-compatible, so from Proposition 2.2

there exists a nonzero r0 ∈ R such that g(n)f(m)r0 = 0 with f(m)r0 6= 0, for all

m,n ∈ N ∪ {0}. It follows that r.annR(Cg) 6= 0 for all g ∈ A. Therefore there

exists a nonzero ideal I such that I ⊆ r.annR(Cg) since R is a strongly right AB

ring. Thus, (HI, ω) ⊆ r.ann(HR,ω)(A). This implies that r.ann(HR,ω)(A) contains

a nonzero ideal (HI, ω). Hence, (HR,ω) is strongly right AB. �

In [1], Ahmadi et al. introduced the concept of skew Hurwitz series-wise Armen-

dariz by considering R as a commutative ring, defined as follows:

Definition 2.6. Let R be a commutative ring and ω : R → R be an endomor-

phism of R. The ring R is said to be skew Hurwitz series-wise Armendariz if for

every skew Hurwitz series f, g ∈ (HR,ω), fg = 0 if and only if f(n)g(m) = 0 for

all n, m.

Sharma and Singh [37] gave the definition of skew Hurwitz series-wise Armendariz

in case of noncommutative ring. For more details about Armendariz rings and their

generalizations, see [2], [16], [33].

Definition 2.7. Let R be a ring and ω : R → R be an endomorphism of R. The

ring R is said to be skew Hurwitz series-wise Armendariz if for every skew Hurwitz

series f, g ∈ (HR,ω), fg = 0 implies f(n)ωng(m) = 0 for all n, m.

6 Online first



Theorem 2.8. Let R be a ring which is skew Hurwitz series-wise Armendariz

and ω-compatible. Then the following statements are equivalent:

(1) R is strongly right AB.

(2) (HR,ω) is strongly right AB.

P r o o f. (i)→ (ii) Let A be a nonzero subset of (HR,ω) with r.ann(HR,ω)(A) 6= 0

and let Cg be a set of coefficients of all g ∈ A. Then for a nonzero f ∈ r.ann(HR,ω)(A),

gf = 0. Therefore g(n)f(m) = 0 for all m,n ∈ N ∪ {0} since R is skew Hurwitz

series-wise Armendariz and ω-compatible. It follows that r.annR(Cg) 6= 0 for all

g ∈ A. Therefore there exists a nonzero ideal I such that I ⊆ r.annR(Cg) since

R is a strongly right AB ring. Thus, (HI, ω) ⊆ r.ann(HR,ω)(A). This implies

that r.ann(HR,ω)(A) contains a nonzero ideal (HI, ω). Hence, (HR,ω) is strongly

right AB.

(ii)→ (i) Suppose A is a nonzero subset of R with r.annR(A) 6= 0. And we know

that r.annR(A) = r.ann(HR,ω)(A) ∩ A. It follows that r.ann(HR,ω)(A) 6= 0. Since

(HR,ω) is strongly right AB, there exists a nonzero ideal I of (HR,ω) such that

I ⊆ r.ann(HR,ω)(A). Now, suppose If is a set of coefficients of all f ∈ I. Then If is

a nonzero ideal of R and If ⊆ r.ann(HR,ω)(A). Thus, If ⊆ r.annR(A). Hence, R is

strongly right AB. �

As a direct consequence of the above theorem, we obtain the following corollary.

Corollary 2.9. Let R be a ring which is skew Hurwitz series-wise Armendariz

and ω-compatible. Then the following statements are equivalent:

(1) R is strongly right AB.

(2) HR is strongly right AB.
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