ON FORBIDDEN CONFIGURATION
OF PSEUDOMODULAR LATTICES

MANOJ DHAKE, Pune, SACHIN BALLAL, Hyderabad,
VILAS KHARAT, RUPESH S. SHEWALE, Pune

Received August 17, 2023. Published online July 1, 2024.
Communicated by Simion Breaz

Abstract. We characterize the pseudomodular lattices by means of a forbidden configuration.

Keywords: forbidden configuration; pseudomodular lattice; semimodular lattice

MSC 2020: 06C10, 06C99

1. INTRODUCTION AND PRELIMINARIES

Dress and Lovász in [4] studied full algebraic matroids of finite ranks for modularity of the flats. They characterized the existence of flats using the rank function and quasi-intersection. Björner and Lovász in [2] introduced a class of pseudomodular lattices as a generalization of modular lattices to contain full algebraic combinatorial geometries; see also [3]. A semimodular lattice L of finite length is said to be pseudomodular if every pair of elements of L has a pseudointersection. The class of pseudomodular lattices forms a subclass of the class of semimodular lattices and contains all modular lattices of finite length. Characterizations of classes of lattices by means of the non-existence of certain sublattices called forbidden configurations are available in the literature, such as the classes of distributive lattices, modular lattices, semimodular lattices, etc. In this paper, we establish a characterization by means of a forbidden sublattice for the class of pseudomodular lattices.

We give here some definitions and notations for ready reference; see Birkhoff [1], Grätzer [5], Haskins and Gudder [6], Stern [7], etc.

This work is supported by University Grants Commission, under JRF, Govt. of India.

DOI: 10.21136/MB.2024.0126-23

© The author(s) 2024. This is an open access article under the CC BY-NC-ND licence
Let P be a nonempty poset and $x, y \in P$. If $x \leq y$, then the length of an interval $[x, y]$, denoted by $\text{lt}[x, y]$, is the supremum of the lengths of the chains in $[x, y]$. The height or rank $r(x)$ of an element x of a poset P bounded below is the length of the interval $[0, x]$.

A lattice L is (upper) semimodular if $a \land b$ is a lower cover of a. Then b is a lower cover of $a \lor b$, for $a, b \in L$. A lattice L is said to be modular if the following condition (M) holds.

(M): $c \lor (a \land b) = (c \land a) \lor b$ for all $a, b, c \in L$ with $c \leq b$.

Definition 1.1 ([1]). The graded poset is defined as a poset P with a function $g: P \to \mathbb{Z}$ such that:

(i) $x > y$ implies $g[x] > g[y]$ and

(ii) if $x < y$, then $g[x] = g[y] + 1$.

Note that any semimodular lattice of finite length is graded by its rank function. Following is the definition due to Björner and Lovász [2], see also [3].

Definition 1.2 ([2]). Let L be a semimodular lattice of finite length, and denote by $r(x)$ the rank function (height function) of L. For each $x, y \in L$ let $P_{x,y} = \{ z \leq y : r(x \lor z) - r(z) = r(x \lor y) - r(y) \}$. If the set $P_{x,y}$ has a unique least element, then we call this the pseudointersection of x and y and denote it by $x \uparrow y$.

A semimodular lattice of finite length is called pseudomodular if every pair of its elements has the pseudointersection.

Remark 1.3 ([2]). The set $P_{x,y}$ lies in the interval $[x \land y, y]$ and is dual order ideal in $[x \land y, y]$.

Lemma 1.4 ([2]). For any two elements x and y in a semimodular lattice L, the following are equivalent:

(i) x and y form a modular pair, i.e., $r(x \lor y) + r(x \land y) = r(x) + r(y)$.

(ii) $x \uparrow y$ exists and $x \uparrow y \leq x$.

(iii) $x \uparrow y$ exists and $x \uparrow y = x$.

(iv) $x \land y \in P_{x,y}$.

Lemma 1.5 ([2]). For any two elements x and y of a semimodular lattice L, the following are equivalent:

(i) $x \uparrow y$ exists, i.e., $P_{x,y}$ has a unique least element.

(ii) $P_{x,y}$ is closed under meets.

(iii) If $u, v, z \in P_{x,y}$ and z covers u and v, then $u \land v \in P_{x,y}$.

A subset I of a poset P is an order ideal if $x \in I$ and $y \leq x$ imply $y \in I$.

2 Online first
2. Main result

We have a forbidden characterization of pseudomodular lattices in the following theorem. In what follows, a sublattice S of a lattice L is said to be cover-preserving in L if for $a, b \in S$, $a \prec b$ in S implies $a \prec b$ in L, see [7].

Theorem 2.1. Let L be a semimodular lattice of finite length. Then L is pseudomodular if and only if L does not contain a cover preserving sublattice isomorphic to the lattice as depicted in Figure 1.

![Figure 1](image)

Proof of Theorem 2.1. Let L be a semimodular lattice of finite length. If L contains a sublattice isomorphic to the lattice as depicted in Figure 1, then the elements c_4, b_4, b_6 belong to P_{b_1,c_4}. Thus $r(b_1 \lor c_4) - r(c_4) = r(b_1 \lor b_4) - r(b_4) = r(b_1 \lor b_6) - r(b_6)$, but $r(b_1 \lor (b_4 \land b_6)) - r(b_4 \land b_6) \neq r(b_1 \lor b_6) - r(b_6)$. Therefore $b_4 \land b_6 \notin P_{b_1,c_4}$, which implies that P_{b_1,c_4} does not have the least element and so the pseudointersection of b_1 and c_4 does not exist. Therefore, L is not a pseudomodular lattice.

Conversely, suppose that L is a semimodular lattice of finite length which is not pseudomodular. Then there exists a pair of elements $x, y \in L$ such that $P_{x,y} = \{z \leq y: r(x \lor z) - r(z) = r(x \lor y) - r(y)\}$ does not have the least element. Or equivalently, we have a pair x, y in L whose meet does not belong to $P_{x,y}$.

Consider a pair z_1, z_2 in $P_{x,y}$ with minimal height whose meet does not belong to $P_{x,y}$. Since $y, z_1, z_2 \in P_{x,y}$, we have $r(x \lor y) - r(y) = r(x \lor z_1) - r(z_1) = r(x \lor z_2) - r(z_2)$. Without loss of generality we assume that $lt[x \land y, x \lor y]$ is minimum, i.e., for $u, v \in L$, if $lt[u \land v, u \lor v] < lt[x \land y, x \lor y]$, then $P_{u,v}$ has the least element. We also assume that $x, y \in L$ is a pair such that for $x \land y < u < x$, the set $P_{u,y}$ has the least element.
If $x \leq y$, then x, y becomes a modular pair and by Lemma 1.4, $x \land y \in P_{x,y}$, which is nothing but the pseudointersection of x and y, a contradiction to the assumption.

Similarly, if $x > y$, then also by Lemma 1.4, we have a contradiction. Consequently, we must have $x \parallel y$.

If $x \land y < x$, then by semimodularity we have $y < x \lor y$ and thus $r(x) - r(x \land y) = 1 = r(x \lor y) - r(y)$ and $P_{x,y} = \{z \leq y: r(x \lor z) - r(z) = r(x \lor y) - r(y)\} = \{z \leq y: r(x \lor z) - r(z) = 1\}$. Also, as $x \land y \leq y$ and $r(x \lor (x \land y)) - r(x \land y) = r(x) - r(x \land y) = 1$, we have $x \land y \in P_{x,y}$ and so $x \land y$ is the least element of $P_{x,y}$, a contradiction, and therefore we must have $x \land y \not< x$.

Consider an element q such that $x \land y < q < x$ and without loss of generality, we consider $x \land y < q < x$. If $x \land y < z_1$, then by semimodularity we have $q < q \lor z_1$ and also $x < x \lor z_1$. Therefore, $r(x \lor (x \land y)) - r(x \land y) = r(x \lor z_1) - r(z_1)$ and consequently, $x \land y \in P_{x,y}$, a contradiction, and so, we must have $x \land y \not< z_1$. Similarly, we have to have $x \land y \not< z_2$.

Now, since $x \land y \not< z_1$ and $x \land y \not< z_2$, there exist q_1 and q_2 such that $z_1 \land z_2 < q_1 < z_1$ and $z_1 \land z_2 < q_2 < z_2$ and without loss of generality, we consider $x \land y < q_1 < z_1$ and $x \land y < q_2 < z_2$.

Consider the set $\{x, y, x \lor y, x \land y, z_1, z_2, x \lor z_1, x \lor z_2, q, q_1, q_2, q \lor q_1, q \lor q_2, q_1 \lor q_2, q \lor q_1 \lor q_2\}$ and we contend that these elements are distinct and also the set forms a cover preserving sublattice of L. Note that by the choice $x \lor y, x \land y, z_1, z_2, x \lor z_1, x \lor z_2, q, q_1$ and q_2 are distinct elements. For the other elements, we have the following.

Claim 2.2. $(x \lor z_1) \land (x \lor z_2) = x$.

Proof. Suppose that $(x \lor z_1) \land (x \lor z_2) > x$. As $q_1 < z_1$, by semimodularity we have $q_1 \lor x < z_1 \lor x$. If $q_1 \lor x < z_1 \lor x$, then $r(q_1 \lor x) = r(z_1 \lor x) - r(z_1) = r(x \lor y) - r(y) = r(x \lor z_2) - r(z_2)$, which implies $q_1 \in P_{x,y}$, a contradiction, and so we must have $(x \lor z_1) \land (x \lor z_2) = x$.

Claim 2.3. $x \land y = z_1 \land z_2$.

Proof. Suppose $x \land y < z_1 \land z_2$. If $x_1 = x \lor (z_1 \land z_2)$, then we have $x_1 \leq (x \lor z_1) \land (x \lor z_2)$, which gives $x \lor y = x_1 \lor y, x \land z_1 = x_1 \lor z_1$ and $x \lor z_2 = x_1 \lor z_2$. It follows that $r(x_1 \lor y) - r(y) = r(x_1 \lor z_1) - r(z_1) = r(x_1 \lor z_2) - r(z_2)$ and so $y, z_1, z_2 \in P_{x_1,y}$. Since $\ell [x \land y, x \lor y] < \ell [x \land y, x \lor y]$, we have $z_1 \land z_2 \in P_{x_1,y}$. Thus, $r(x_1 \lor (z_1 \land z_2)) - r(z_1 \land z_2) = r(x_1 \lor y) - r(y) = r(x \lor y) - r(y)$. Moreover, $z_1 \land z_2 \in P_{x,y}$, a contradiction, and so we must have $x \land y = z_1 \land z_2$.

4
Claim 2.4. $z_1 \lor z_2 = y$.

Proof. Suppose that $z_1 \lor z_2 < y$. If $y_1 = z_1 \lor z_2$, then $z_1 < y_1 < y$. Since $P_{x,y}$ is a dual order ideal, we have $y_1 \in P_{x,y}$ and so $r(x \lor y_1) - r(y_1) = r(x \lor y) - r(y)$, which gives $x \lor y \neq x \lor y_1$. Now consider the interval $[x \land y_1, x \lor y_1]$. Since $lt[x \land y_1, x \lor y_1] < lt[x \land y, x \lor y]$ and $z_1, z_2, y_1 \in P_{x,y_1}$, we have $z_1 \land z_2 \in P_{x,y_1}$. Thus $r(x \lor (z_1 \land z_2)) - r(z_1 \land z_2) = r(x \lor y_1) - r(y_1) = r(x \lor y) - r(y)$, which implies $z_1 \land z_2 \in P_{x,y_1}$, a contradiction, and so $z_1 \lor z_2 = y$. \hfill \Box

Claim 2.5. $(x \lor z_1) \lor (x \lor z_2) = x \lor y$.

Proof. Observe that $(x \lor z_1) \lor (x \lor z_2) = x \lor (z_1 \lor z_2) = x \lor y$. \hfill \Box

Claim 2.6. $q \lor y = x \lor y$.

Proof. Suppose that $q \lor y < x \lor y$. As $q < x$, by semimodularity we have $q \lor y < x \lor y$. In this case, $q \lor z_1 < x \lor z_1$ and $q \lor z_2 < x \lor z_2$. If $q \lor z_1 = x \lor z_1$ or $q \lor z_2 = x \lor z_2$, then this implies that $q \lor z_1 \lor y = x \lor z_1 \lor y = q \lor y = x \lor y$, which is not possible and so, $r(x \lor y) - r(y) = r(x \lor z_1) - r(z_1) = r(x \lor z_2) - r(z_2)$.

Also, we have $r(q \lor y) - r(y) = r(q \lor z_1) - r(z_1) = r(q \lor z_2) - r(z_2)$, which implies $y, z_1, z_2 \in P_{q,y}$. Since $lt[q \land y, q \lor y] < lt[x \land y, x \lor y]$, we have $z_1 \land z_2 \in P_{q,y}$ and so, $r(q \lor (z_1 \land z_2)) - r(z_1 \land z_2) = r(q \lor y) - r(y) = r(x \lor y) - r(y) - 1$. Consequently, we have $r(q \lor (z_1 \land z_2)) + 1 - r(z_1 \land z_2) = r(x \lor y) - r(y)$. Now, since $q < x$ and $q \lor (z_1 \land z_2) = q$, we have $r(q \lor (z_1 \land z_2)) + 1 = r(x \lor (z_1 \land z_2))$, which gives $r(x \lor (z_1 \land z_2)) - r(z_1 \land z_2) = r(x \lor y) - r(y)$. This implies that $z_1 \land z_2 \in P_{x,y}$, a contradiction, and so we must have $y \lor q = x \lor y$. \hfill \Box

Claim 2.7. $q \lor z_1 = x \lor z_1$.

Proof. Suppose that $q \lor z_1 < x \lor z_1$ and consider a chain of length n in $[z_1, x \lor z_1]$: $z_1 < p_1 < p_2 < \ldots < p_{n-1} = q \lor z_1 < x \lor z_1$. By semimodularity, we have a chain in $[y, x \lor y]$: $y = z_1 \lor y < p_1 \lor y \leq p_2 \lor y \leq \ldots \leq p_n = q \lor z_1 \lor y = x \lor z_1 \lor y$ which is of length at most n, a contradiction to the fact that $r(q \lor y) - r(y) = r(q \lor z_1) - r(z_1)$. So we must have $q \lor z_1 = x \lor z_1$. \hfill \Box

Claim 2.8. $q \lor z_2 = x \lor z_2$.

Proof. Is similar to that of Claim 2.7. \hfill \Box

Claim 2.9. $x \lor q_1 = x \lor z_1$.

Proof. Suppose that $x \lor q_1 < x \lor z_1$. As $q_1 < z_1$, by semimodularity we have $x \lor q_1 < x \lor z_1$. This gives $r(x \lor z_1) - r(z_1) = r(x \lor q_1) - r(q_1)$. Thus, $q_1 \in P_{x,y}$, a contradiction, and so we must have $x \lor q_1 = x \lor z_1$. \hfill \Box

Online first
Claim 2.10. $x \lor q_2 = x \lor z_2$.

Proof. Is similar to that of Claim 2.9.

Claim 2.11. $q_1 \lor z_2 = y$.

Proof. Suppose that $q_1 \lor z_2 < y$. As $q_1 < z_1$, by semimodularity we have $q_1 \lor z_2 < y$. If $y_1 = q_1 \lor z_2$, then $z_2 < y_1 < y$. Since $P_{x,y}$ is a filter, we have $y_1 \in P_{x,y}$, which implies $r(x \lor y_1) = r(y_1) = r(x \lor y) - r(y)$. Also, we have $q_1 \leq y_1 \leq x \lor y_1$ and $x \leq x \lor y_1$, therefore $x \lor q_1 \leq x \lor y_1$. Since $x \lor q_1 = x \lor z_1$, we have $z_1 \leq x \lor z_1 \leq x \lor y_1$. Also $z_2 \leq y_1 \leq x \lor y_1$ and therefore $z_1 \lor z_2 \leq x \lor y_1$. However, we have $z_1 \lor z_2 = y < x \lor y_1$, a contradiction, and so we must have $q_1 \lor z_2 = y$.

Claim 2.12. $q_2 \lor z_2 = y$.

Proof. Is similar to that of Claim 2.11.

Claim 2.13. $q \lor q_1 < x \lor z_1$.

Proof. Suppose that $q \lor q_1 = x \lor z_1$. Note that $x \land y \neq q$ and $x \land y \neq q_1$; otherwise, $q_1 < q \lor q_1$, which is not true since $q_1 < z_1 < x \lor z_1$. Therefore there exists p_1 such that $x \land y < p_1 < q$. We have $p_1 \parallel z_1$, $p_1 \parallel q_1$ and $p_1 \lor q_1 \parallel z_1$. Now, if $(p_1 \lor q_1) \lor z_1 = x \lor z_1$ and $z_1 < x \lor z_1$ and so $r(x \lor z_1) - r(z_1) = 1$. Also, as $q \lor y = x \lor y$, $q \lor z_1 = x \lor z_1$, $q \lor z_2 = x \lor z_2$ and $q < x$ and so, by assumption, $P_{q,y}$ must have the least element. We have $y, z_1, z_2 \in P_{q,y}$, $z_1 \land z_2 \in P_{q,y}$ but $r(q \lor (x \land y)) - r(x \land y) \neq 1$, a contradiction, and so we must have $q \lor q_1 < x \lor z_1$.

Claim 2.14. $q \lor q_2 < x \lor z_2$.

Proof. Is similar to that of Claim 2.13.
Claim 2.15. $x \land y < q$.

Proof. Suppose there exists an element p such that $x \land y < p < q$. It follows that $p \lor q_1 \leq q \lor q_1$. If $p \lor q_1 = q \lor q_1$, then by semimodularity we have $q_1 < q \lor q_1$, which is not true. Therefore $p \lor q_1 < q \lor q_1$ and by semimodularity we have $q_1 < p \lor q_1$ and similarly, $q_2 < p \lor q_2$. In this case, $(p \lor q_1) \land z_1 \leq x \lor z_1$. We consider the following subcases:

(i) Suppose $(p \lor q_1) \land z_1 = x \lor z_1$. By semimodularity we have $z_1 < x \lor z_1$ and $y < x \lor y$ and therefore $r(x \lor z_1) - r(z_1) = r(x \lor y) - r(y) = 1$. Since $r(x \lor y) - r(y) = r(x \lor z_2) - r(z_2) = 1$ and hence $z < x \lor z_2$. We also have $q \lor y = x \lor y$, $q \lor z_1 = x \lor z_1$, $q \land z_2 = x \lor z_2$. Thus $y_1, z_1, z_2 \in P_{q,y}$ and by assumption, $P_{q,y}$ must have the least element, which gives $z_1 \land z_2 \in P_{q,y}$. Therefore $r(x \lor y) - r(y) = r(q \lor (z_1 \land z_2)) - r(z_1 \land z_2) = 1$, a contradiction to the fact that $r(q) - r(x \lor y) > 1$, and therefore $(p \lor q_1) \land z_1 \neq x \lor z_1$. Similarly, $(p \lor q_2) \land z_2 \neq x \lor z_2$.

(ii) Suppose $(p \lor q_1) \land z_1 < x \lor z_1$. Let $p_1 = (p \lor q_1) \land z_1$. By semimodularity we have $z_1 < p_1$. If $p_1 \lor y = x \lor y$, then $y < x \lor y$, a contradiction to the fact that $r(x \lor y) - r(y) = r(x \lor z_1) - r(z_1)$, and therefore $p_1 \lor y < x \lor y$. By semimodularity we have $y < p_1 \lor y$. Similarly, for $p_2 = (p \lor q_2) \lor z_2$, we have $y < p_2 \lor y$.

In this case, $p_1 \lor y = p_2 \lor y = (p \lor q_2 \lor z_2) \lor y = (p \lor z_2) \lor y = p \lor y$. Let $y_1 = p_1 \lor y = p_2 \lor y = p \lor y$. Then $x \lor y_1 = x \lor y$, $x \land y < x \land y_1$ and $x \land y_1 \geq p$. Therefore $l(t[x \land y_1, x \land y]) < l(t[x \land y, x \land y])$. As $r(x \lor y_1) - r(y_1) = r(x \lor p_1) - r(p_1) = r(x \lor z_1) - r(p_1) = r(x \lor z_2) - r(p_2) = r(x \lor p_2) - r(p_2)$, we have $y_1, p_1, p_2 \in P_{x,y_1}$. Hence P_{x,y_1} has the least element, which gives $p_1 \land p_2 \in P_{x,y_1}$. Thus $r(x \lor y_1) - r(y_1) = r(x \lor (p_1 \land p_2)) - r(p_1 \lor p_2)$ and we have $p_1 \land p_2 \geq p$. Also, $p_1 \land p_2 \leq x \lor z_1$ and $p_1 \land p_2 \leq x \lor z_2$, which gives $p_1 \land p_2 \leq (x \lor z_1) \land (x \lor z_2)$, and so $p_1 \land p_2 \leq x$. In this case, $q \lor y = q \lor y_1 = x \lor y$, $q \lor z_1 = q \lor p_1 = x \lor z_1$, $q \lor z_2 = q \lor p_2 = x \lor z_2$ and $q \land y_1 > x \land y$, and so $y_1, p_1, p_2 \in P_{q,y_1}$. By assumption, P_{q,y_1} has the least element and so $p_1 \land p_2 \in P_{q,y_1}$. Thus $r(q \lor (p_1 \land p_2)) - r(p_1 \land p_2) = r(x \lor z_1) - r(p_1)$. Since $(x \lor (p_1 \land p_2)) - r(p_1 \land p_2) = r(x \lor z_1) - r(p_1)$, which implies that $r(q \lor (p_1 \land p_2)) - r(p_1 \land p_2) = (x \lor (p_1 \land p_2)) - r(p_1 \land p_2)$, we have a contradiction as $q < x$. Thus, in each of the cases we get a contradiction and consequently we must have $x \land y < q$.

Also, since $q_1 < z_1$, $q_2 < z_2$ and $q < x$, by semimodularity we have $q \lor q_2 < x \lor z_2$ and $q \lor q_1 < x \lor z_1$.

Claim 2.16. $x \land y < q_1$.

Proof. Suppose there exists p_1 such that $x \land y < p_1 < q_1$. By semimodularity, we have $q < q \lor p_1$, $x < x \lor p_1$, $z_2 < p_1 \lor z_2$ and $q \lor q_2 < q \lor p_2 \lor p_1$. Let $z_2 = p_1 \lor z_2$ and we have $x \lor z_2 < z_2 \lor x$. Let $x_1 = x \lor p_1$ and we have $l(t[x_1 \land y, x_1 \lor y] < l(t[x \land y, x \lor y])$.
Since $z'_2 > z_2$ and $P_{x,y}$ is a dual order ideal, we have $z'_2 \in P_{x,y}$. Thus $r(x \vee z'_2) - r(z'_2) = 1$. Also we have $x_1 \vee y = x \vee y$, $x_1 \vee z_1 = x \vee z_1$ and $x_1 \vee z'_2 = x \vee z'_2$. It follows that $y, z_1, z'_2 \in P_{x_1,y}$ and so $z_1 \wedge z'_2 \in P_{x_1,y}$. Thus $r(x_1 \vee (z_1 \wedge z'_2)) - r(z_1 \wedge z'_2) = 1$. Since $q_1 > z_1 \wedge z'_2 \geq p_1$ and $x_1 \vee (z_1 \wedge z'_2) = x \vee z_1$, we have $r(x_1 \vee (z_1 \wedge z'_2)) - r(z_1 \wedge z'_2) > 1$, a contradiction, and so we must have $x \wedge y < q_1$. □

![Figure 3.](image)

Claim 2.17. $x \wedge y < q_2$.

Proof. Is similar to that of Claim 2.16. □

Claim 2.18. $q_1 \lor q_2 < y$.

Proof. Suppose that $q_1 \lor q_2 = y$, since $x \wedge y < q_1, q_2$ implies $x \wedge y = q_1 \wedge q_2$ and by semimodularity, $q_1 < y$ and $q_2 < y$, which is not true and so we must have $q_1 \lor q_2 < y$. □

Now, $x \wedge y < q_1, q_2$ implies $x \wedge y = q_1 \wedge q_2$ and by semimodularity, $q_1 < q_1 \lor q_2$ and $q_2 < q_1 \lor q_2$. Also, $x \wedge y < q, q_1$ implies $x \wedge y = q_1 \wedge q$ and so by semimodularity, $q < q \lor q_1$ and $q_1 < q \lor q_1$. Similarly, $x \wedge y < q, q_2$ implies $x \wedge y = q_2 \lor q$, so by semimodularity, $q < q \lor q_2$ and $q_2 < q \lor q_2$. Now, $q_1 < q_1 \lor q_2$ and $q_2 < q_1 \lor q_2$ implies $q_1 = (q_1 \lor q_2) \wedge z_1$ and $q_2 = (q_1 \lor q_2) \wedge z_2$ and by semimodularity, $z_1 < (q_1 \lor q_2) \lor z_1 = y$, $z_2 < (q_1 \lor q_2) \lor z_2 = y$ and $q_1 \lor q_2 < (q_1 \lor q_2) \lor z_2 = y$.

Claim 2.19. $(q_1 \lor q_2) \lor y < x \lor y$.

Proof. Suppose that $(q_1 \lor q_2) \lor y = x \lor y$. Since $q \wedge (q_1 \lor q_2) < q$, by semimodularity we have $q_1 \lor q_2 < q \lor (q_1 \lor q_2)$, which is not true as $q_1 \lor q_2 < y < x \lor y$. Therefore $(q_1 \lor q_2) \lor y < x \lor y$. □
Since \(q_1 \prec q \lor q_1 \), by semimodularity, \((q_1 \lor q_2) \prec (q_1 \lor q_2) \lor q\). Also, \(q_1 \prec q_1 \lor q_2 \) implies \(q_1 \lor q \prec q_1 \lor q_2 \lor q \), which further implies \(q_2 \lor q \prec q_1 \lor q_2 \lor q \) and also \(q_1 \lor q_2 \prec y \) implies \(q_1 \lor q_2 \lor q \prec x \lor y \). Hence, \(L \) contains the following cover preserving sublattice.

![Figure 4](image)

The following result is due to Teo [8].

Corollary 2.20 ([8]). A lattice \(L \) of finite length is not semimodular if and only if \(L \) contains a subpentagon \((a \land c, a, b, c, a \lor b)\) with the properties

(i) \(a \land c \prec a, b \prec c \prec a \lor b \), or

(ii) \(a \land c \prec a, a \land c \prec b, c \prec a \lor b \).

![Figure 5](image)

Corollary 2.21. Let \(L \) be a lattice of finite length. Then \(L \) is a pseudomodular lattice if and only if it does not contain a sublattice isomorphic to a cover preserving lattice as depicted in Figure 4 or Figure 5 (a) or Figure 5 (b).
References

Authors’ addresses: Manoj Dhake, Department of Mathematics, S. P. Pune University, Ganeshkhind Rd, Pune, Maharashtra 411007, India, e-mail: manojdhake2012@gmail.com; Sachin Ballal (corresponding author), School of Mathematics and Statistics, University of Hyderabad, Hyderabad Central University Rd, Hyderabad, Telangana, 500046, India, e-mail: sachinballal@uohyd.ac.in; Vilas Kharat, Rupesh S. Shewale, Department of Mathematics, S. P. Pune University, Ganeshkhind Rd, Pune, Maharashtra 411007, India, e-mail: laddoo1@yahoo.com, rsshewale@gmail.com.