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Abstract. We investigate the uniqueness results of meromorphic functions if differential
polynomials of the form (Q(f))(k) and (Q(g))(k) share a set counting multiplicities or
ignoring multiplicities, where @) is a polynomial of one variable. We give suitable conditions
on the degree of Q@ and on the number of zeros and the multiplicities of the zeros of Q’.
The results of the paper generalize some results due to T. T. H. An and N. V. Phuong (2017)
and that of N. V. Phuong (2021).
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f(z) be a nonconstant meromorphic function. The term “meromorphic” indi-
cates meromorphic in the entire complex plane C. We denote by S(r, f) any function
satisfying S(r, f) = o(T(r, f)) as r — oo outside of a possible exceptional set with
finite measure. Here, T'(r, f) denotes the Nevanlinna characteristic of f, and we use
the standard notations of Nevanlinna value distribution theory throughout this work
(see [8], [10], [16]). A meromorphic function a(z) is called a small function of some
function f(z) if T'(r,«) = S(r, f). We say that two meromorphic functions f, g share
a function « CM (counting multiplicities) if f—« and g—« admit the same zeros with
the same multiplicities, and we say that f and g share o IM (ignoring multiplicities)
if we do not consider the multiplicities. Let S be either a subset of C U {oc} or a
subset of S(f)U{oco}, where S(f) denotes the set of small functions of f. We define

E¢(S) = U{z eC: f(z) —a=0},

a€eS
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where each zero of f —a CM is included in the set, i.e., E¢(S) is a multi-set. In the

case we do not count the multiplicities, the collection |J {z € C: f(z) —a = 0} of
a€esS

only distinct zeros is denoted by £ £(S). Two functions f and g are said to share the
set S CM (IM) if E¢(S) = E4(S) (Ef(S) = E4(S)). Clearly, in the case when S is
singleton, set sharing coincides with value sharing or a single small function sharing.

In 1959, Hayman (see [7]) published one of his significant paper, where the zero
distribution of complex differential polynomials was considered, that is, if f is a tran-
scendental meromorphic function and n € N, then Hayman conjectured that f’f™
takes every finite nonzero value infinitely often.

Hayman conjecture has been proved completely by Hayman in [7] for the case
n > 3, by Mues in [11] for n = 2 and by Bergweiler and Eremenko (see [4]), Chen
and Fang (see [6]) and Zalcman (see [17]) for n = 1.

In 1997, Yang and Hua in [15] studied the unicity problem for meromorphic func-
tions and differential monomials of the form f’f™, when they share only one value.

In 2007, Bhoosnurmath and Dyavanal (see [5]) extended Yang-Hua’s result to the
case (),

Being inspired by Yang’s problem (see [14]) that whether f=1(S) = ¢g=1(S) with
S = {—1,1} for the two same degree polynomials f and g implies either f = g or
f = —g, An and Khoai (see [3]) proved a uniqueness result on the meromorphic
functions f and g when (f")*) and (¢g")(®) share a finite set. In this direction,
Khoai and An (see [9]) proved a uniqueness result on meromorphic functions when
two differential polynomials of the form (P(f)")®*) share a set of roots of unity.

Let Q(z) be a polynomial of degree ¢ in C and k be a positive integer. Denote the
derivative of Q(z) by

l
Q'(z) = bH(z —G)™

with b € C* (= C — {0}), and denote by v and h the indexes such that 1 < v <
h <, and

In 2017, An and Phuong (see [1]) proved a uniqueness result on meromorphic
functions when (Q(f))™ and (Q(g))*) share a small function a CM. Their result is
as follows:

Theorem A. Let f and g be two nonconstant meromorphic functions, and o be
a nonzero small function with respect to f. Suppose that [Q(f)]*®) and [Q(g)]*
!
share « CM. If ¢ > k+6+2v(k+1)+2 > m;, then one of the following conclusions
holds: =

2 Online first



(1) Q(f) = Q(g) + c for a constant c;
2) [RINIMIQ(I™ = o,

The authors [1] also showed that conclusion (2) of Theorem A can be ruled out
by adding more constraints on the multiple zeros of Q'(z) or if f and g share co IM
and proved the following theorem.

Theorem B. Let f and g be two nonconstant meromorphic functions, and «
be a nonzero small function with respect to f. Assume that [Q(f)]*) and [Q(g)]*)

share o CM. If ¢ > k+ 6+ 2v(k+ 1) + 2 Zl: m, and if one of

(1) h > 4 i=v+1

(2) h=3and q¢ #2my — 2k +2, ¢ # (3m1 — 2k + 3)/2, and q # 3m; — 2k + 3, for
allt =1,2,3; or

3) h=2

and f and g share oo IM holds, then

Q(f)=Q(g) + ¢ for a constant c.

In 2021, Phuong (see [12]) proved the following results for sharing the small func-
tion o IM.

Theorem C. Let f and g be two nonconstant meromorphic functions, and o be a
nonzero small function with respect to f. Suppose that [Q(f)]**) and [Q(g)]*®) share

aIM. If g >4k + 12+ v(5k+2)+5 Xl: m,, then one of the following conclusions
holds: v

(1) Q(f) = Q(g) + ¢ for a constant ¢;

2) [RINPIQ(IM = a?.

Theorem D. Let f and g be two nonconstant meromorphic functions, and o be
a nonzero small function with respect to f. Suppose that [Q(f)]*) and [Q(g)]*®

share o IM. If ¢ > 4k + 12+ v(bk +2) + 5 i m;, and if one of

1) k>4 i=v+l

(2) h =3 and q # 2my — 2k + 2, ¢ # (3m1 — 2k + 3)/2, and q # 3m; — 2k + 3, for
alli=1,2,3; or

(3) h=2

and f and g share co IM holds, then

Q(f) =Q(g) +c for a constant c.
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Now the following question is inevitable.

Question 1.1. What will happen if sharing a small function « is replaced by shar-
ing a set S = {a(2),wa(z),w?a(z),...,wi ta(z)}, with w? = 1 in Theorems A-D?

In this regard, we obtain the next main results which answers the above question.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions, and « be
a nonzero small function with respect to f. Let d be a positive integer such that q >

!
k+2+4/d+2v(k+1)+2 Y. m; and let S = {a(z),wa(z),w?a(z),..., w0 a(2)},
1=v+1
where w? = 1. If[Q(f)]*) and [Q(g)]*) share the set S CM, then one of the following

conclusions holds:
(1) Q(f) =tQ(g) + c for a constant ¢ and t? = 1;
2) [RINIPIQ(gI™ = ta?/? with t* = 1.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, and «
be a nonzero small function with respect to f. Let d, S be defined as in Theorem 1.1

and ¢ > k+2+4/d+2v(k+ 1) +2 i mg. If [Q(£)]*) and [Q(g)]®) share the

set S CM and if one of I

(1) h >4

(2) h=3and q # 2m1 — 2k + 2, ¢ # (3m1 — 2k + 3)/2, and q # 3m,; — 2k + 3, for
alli=1,2,3; or

(3) h=2

and f and g share co IM holds, then

Q(f) =tQ(g) + ¢ for a constant ¢ and t* = 1.

Theorem 1.3. Let f and g be two nonconstant meromorphic functions, and «
be a nonzero small function with respect to f. Let d, S be defined as in Theorem 1.1

and ¢ > k+ 2+ (3k+10)/d + v(2k + 2 4+ 3k/d) + (2 + 3/d) le mi. If [Q(f)]™
1=v—+1

and [Q(g)]®) share the set S IM, then one of the conclusions of Theorem 1.1 holds.

Theorem 1.4. Let f and g be two nonconstant meromorphic functions, and «
be a nonzero small function with respect to f. Let d, S be defined as in Theorem 1.1

1
and ¢ > k+2+ (3k +10)/d +v(2k +2+3k/d) + (2+3/d) > m;. IF[Q(f)]* and
1=v+1
[Q(9)]™®) share the set S IM and if one of (1), (2) and (3) of Theorem 1.2 holds, then

Q(f) =tQ(g) + ¢ for a constant ¢ and t¢ = 1.
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Remark 1.1. If we put d = 1 in Theorems 1.1-1.4, then we obtain Theo-
rems A-D, respectively.

Definition 1.1. Let a be a finite complex number, and let p be a positive integer.
We denote by N,(r,1/(f — a)) the counting function for zeros of f — a, where a zero
of multiplicity m is counted m times if m < p and p times if m > p.

2. LEMMAS
We now present some lemmas that will be useful in the next section.

Lemma 2.1 ([13] Logarithmic derivative lemma). Let f be a nonconstant mero-
morphic function on C. Then

m(r, J;/) =S5(r, f)

as r — oo outside a subset of finite measure.

Lemma 2.2 ([8], [13] First fundamental theorem). Let f be a meromorphic func-
tion, and let ¢ be a complex number. Then

T(r, ﬁ) =T(r, f) + O(1).

Lemma 2.3 ([8], [13] Second fundamental theorem). Let f be a nonconstant

meromorphic function on C. Let ay, ..., aq be distinct meromorphic functions on C.
Assume that as are small functions with respect to f for alli =1,...,q. Then the
inequality

q
— 1
(4=2)T(r ) < SN (r, =) + 5. f)
= W
holds for all r outside a set E C (0,00) with finite Lebesgue measure.

Lemma 2.4 ([18]). Let f be a nonconstant meromorphic function, and let p and k
be two positive integers. If f*) # 0, then

N, (i) < TS =T ) + Ny (11 5) + (0.,

N, (1 757) < KNG+ Ny (12 7) +505),

and

N(r, ﬁ) < kN(r, f) —|—N(7‘, %) + S(r, f).
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Lemma 2.5. Let Q be a polynomial of degree q in C, and let k be a positive

integer. Let
1

Q=) = b= - )™

i=1
with b € C*. Let f and g be two nonconstant meromorphic functions. Assume that

QUMM = ([Q(I™N)®. If ¢ — 2l — 2k — 4 > 0, then Q(f) = tQ(g) + ¢ for
a constant ¢ and t% = 1.

Proof. Since ([Q(N®) = (IQ@))M)7, we get [Q(F)]*) = 1[Q(g)]* where
t¢ = 1. This gives
Q(f) =tQ(9) +

where ¢ is a polynomial of degree at most k — 1. Therefore,
qT'(r.g) < qT(r, f) +T(r,0) + O(1), and [f'Q'(f) =tg'Q'(9) +¢".

If £ =1, then ¢ = ¢, a constant.
If & > 2, then proceeding in a similar manner as in the proof of Lemma 3.1 of [1],
we can deduce that ¢ = ¢ for a constant c. O

Lemma 2.6. Let f and g be two nonconstant meromorphic functions, and let o

be a small function with respect to f. Let d, S be defined as in Theorem 1.1 and
l

q>5+1/d+v(k+1)+ S my. If [Q(f)]™ and [Q(g)]*) share the set S IM, then

1=v+1
T(r,f)=0(T(r,g)), T(r,g) = O(T(r, f)), and « is a small function with respect to g.

Proof. Let

= F
= G4,

F=[QNHI™, F =q(f),
G =[QI™, Gi:=0Q(y),

Q) T

It is easy to see that
S(r,F)=S8(r,F)=S(r,f) and S(r,G) = S(r,G)=S(r,g).
Now we have

@) TE) =T Q) > T(n Q) - 1(n ) +0)

=T (r,Q'(f) = 2T(r, f) + O(1) = (¢ = 3)T(r, f) + O(1).
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Applying Lemma 2.3 to F , we obtain

=

(2.2) dT(r, F) = T(r, F) < (r,ﬁ)+ﬁ(r%)+ﬁ(r, 1 >+S(r,f)

F—a
_ — 1 — 1
SN D AN(r ) + V() + 50,
Again by Lemma 2.4 with (F})*~Y) = F, we have
(2.3) T(,F) > T(r, F}) + Na(r, %) ~ Newa (, i,) +S(r, f).
1
From (2.1), (2.2) and (2.3) we get
(g—=3)T(r,f) < éﬁ(r, )+ éﬁ(r, %) + éﬁ(r, 7 i a) — Ny (r, %)
+ Niyq (r, }%) + S(r, f)
< éﬁ(r, )+ éN(T, = a) + Niyq (T, ;,1,) + S(r, f)
1 1 1 - 1
< gN(r,f)—i-EN(r, é—a) —|—N<r,?> +(k+1);N(r, f—C)

l
< (2 oo 0+ 30 )T )+ alh+ DT 0) + S0 1),

1=v+1

Therefore

l

d 1=v+1

!

which implies T(r, f) = O(T(r,g)) if ¢ > 5+ 1/d+v(k+1)+ > m,;. Similarly,
I=v+1

it can be shown that T'(r,g) = O(T'(r, f)) and hence, « is a small function with

respect to g. O

Lemma 2.7 ([2]). Let f and g be two nonconstant meromorphic functions, and
let « be a nonzero small function with respect to both f and g. If f and g share
« CM, then one of the following three cases holds:

(1) T(Ta f) < N2(T’ f) + NQ(T7 g) + NQ(T’ 1/f) + NQ(T? 1/9) + S(’I“, f) + S(’I“,g), and
the same inequality holds for T'(r, g);

2) f=g

(3) fg=a?.
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Lemma 2.8 ([12]). Let f and g be two nonconstant meromorphic functions, and
let « be a nonzero small function with respect to both f and g. If f and g share
«a IM, then one of the following three cases holds:

(1) T(r, f) < Na(r, f) + Na(r,g) + Nao(r,1/f) + Na(r,1/g) + 2N(r, f) + N(r,g) +
2N(r,1/f) + N(r,1/g) + S(r, f) + S(r,g), and the same inequality holds for
T(r,9);

2) f=g

(3) fg=a?

Lemma 2.9. Let f, g be nonconstant meromorphic functions and a(# 0,00) be
a small function with respect to both f and g. If

(RN ™M) = o?,

then h < 2 or h = 3 and either ¢ = 2m; — 2k + 2, ¢ = (3m1 — 2k +3)/2, or
q = 3m; —2k+3, for i = 1,2, 3. If we further assume that f and g share co IM, then
also h = 1.

Proof. From ([Q(f)]*)*([Q(g)™)* = a* we have [Q(f)]M[Q(g)]™) = ta?/?,

where t¢ = 1. This gives

QNS VN Q (g) Y = ta?/1.

Since l

where be C* and m; > mo > ... Z2mp =2 k> mpy1 = ... = my, we can write

h

h
[T =¢m- ’f“Hg GRS f*¥)R(g g gW) =t

i=1

where R(f, f',..., f*)) and R(g7 g, ...,g%) are polynomials. Then proceeding sim-
ilarly as in the proof of Lemma 3.4 in [1], we can get the required result. O

3. PROOF OF THE THEOREMS

Proof of Theorem 1.1. Let F, G, Fy, Gy, F and G be defined as in the proof
of Lemma 2.6. Then it is easy to prove that

S(r,F)=S8(r,F)=S(r,f) and S(r,G) = S(r,G)=S(r,g).

By Lemma 2.6, « is a small function with respect to g also. Since F' and G share
the set S CM, it follows that F' and G share oo CM. Therefore by Lemma 2.7, one of
the following cases occurs:
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(1) T(r,F) < Na(r,F) + No(r,G) + Na(r,1/F) + Na(r,1/G) + S(r, F) + 5(r, @),
and the same inequality holds for T'(r, G);
(3) FG = a2

If Case (3) holds, then conclusion (2) of the theorem is proved. If Case (2) holds,
then by Lemma 2.5, we get Q(f) = tQ(g) + c for a constant ¢ and ¢t = 1. So
conclusion (1) of the theorem is proved. Now we verify Case (1).

If Case (1) holds, then we have

(3.1) dT(r,F) =T(r, F)
<N2(7’,F\) +N2(7",é) +N2<7’, i) +N2<?", i) +S(’f’,ﬁ) +S(7’,é)
F G

< No(r. F) + Nar, G) + dNo L)+ S0 )+ 5(r.g).

,l) —I—dNQ(r e

F

Now using Lemma 2.4, we have

(32) No(r é) = N(r, (Gl)l(k—l)> < (k= DN (,G}) + Niga (r, G, ) +S(rg).
Again, we can write
Q(2) — R(z) = a(z — B)Q'(2),

where a # 0 and § are constants and R(z) is a polynomial of degree atmost ¢ — 2.

Applying Lemma 2.1, we have

[
3

(r @()) 1 )
"Q(f) = R(f) @U)Y
fl

From this we get

T(r,F!) = m ( ;l,)ﬂv( Fll,)+0(1)
T@QuﬁRUQ*N@QUﬁRUQ+N(;J+O“

EqT(T,f)fN<r,Q/tf)) N( 7o 5)+N( 1},,)+O()

Online first 9




Therefore, applying Lemma 2.4 to the function F} (with the notation (F})*~1) = F),

we have
63)  TE) > T )+ No(r ) = Newa (1 ) +5029)
> qT(r, f) = N(r, ﬁ) - N(r, ﬁ) +N(r, Fil,)
£ N () = Niga (7 ;1) 1 5(r, f).
From (3.1), (3.2) and (3.3) we have

- 1
dqT(r. f) < d(k = )N (r.G}) + dNir (1. 7 ) + Na(r, )
1

+ No(r, F) +dN (7, Q,(f))+d (v fiﬁ)

—dN( ;,,)+de+1< ;,,>+S()

< (d(k —1) +2)N(r, g) + d(k + 1)ZN(T»QEQ>

+an(r, —)+d Z miN (r, _Q)+2W(r,f)

i=v+1

k+1ZN( e C)—f—dZmZ ( 5 Cl)

1=v—+1

+an(r, )+S()

f-8

l
< (d(k+1)+2+du(k’+1)+d > mi>T(r,g)

1=v—+1

!
+ <2—|—d+du(k+ 1)+d Z mi>T(T,f) + S(r).

i=v—+1

This implies

(3.4) (dq—2—d dv(k+1)—d Z mz>
i=v+1
l

< (d(k +D)+24dv(k+1)+d Y m¢>T(T, 9) + S(r).
1=v+1
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Similarly, it can be shown that

(3.5) (dq—? d—dv(k+1)—d Z ml)
1=v+1
l

< (d(k+1)+2+du(k+1)+d Z mi)T(r,f)—FS(r).

1=v+1

Combining (3.4) and (3.5), we get

!
(dq —4—d(k+2)—2dv(k+1)—2d Z mi) (T(r,g)+T(r, f)) < S(r).

i=v+1

!
Thus, we have ¢ > k+2+4/d+2v(k+1)+2 > m,;, which is a contradiction. This

proves the theorem. =l O

Proof of Theorem 1.2. The proof of this theorem follows from Theorem 1.1 and
Lemma 2.9. O

Proof of Theorem 1.3. The notations F, G, Fy, G, F and G are the same as
defined in the proof of Lemma 2.6. By Lemma 2.6, « is a small function with respect
to g also. Since F' and G share the set S IM, F and G share a IM. Therefore by
Lemma 2.8, one of the following cases occurs:

(1) T(r, F) No(r, F)+N2(r G)+N2(T 1/F)—|—N2(r 1/G)+2N(r F)—i—N(r G)
2N (r, 1/F) + N(r,1/G) + S(r, F) + S(r,G), and the same inequality holds
for T(r G);

(2) F=a,

(3) FG =2

Conclusions (1) and (2) of the theorem hold preciously from cases (2) and (3), re-

spectively. Next we assume that Case (1) holds. Then

(3.6)  dI(r,F)=T(rF)
< No(r, F) + Na(r, G) + Na (r, f) +Ns(r, G) + 9N (r, F)
+N(r,@)+2ﬁ(r,%) +N(r é) +S(r, F) + S(r,G)
< No(r, F) + No(r, @) + AN (r, 72 ) +dNa (1. é) +ON(r, F)
(1

+N(T,G)+2N(T,%>+7( —) S(r, f)+5(r,g).

C)
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Now using Lemma 2.4, we have
/1 1 — 1
(37 N(rg)=N(n (Fl)m) < (k= DN F) + Ny (r ) + S0)
and
— 1 —
(3:8) N(rg) < k= UNGG) + Ner 7 ) + Str.0).

Again, by similar arguments as in the proof of Theorem 1.1, we can get the inequal-
ities (3.2) and (3.3).
From (3.2), (3.3), (3.6), (3.7) and (3.8), we have

AT (r, £) < dlk ~ ON(G) + N (7, 57 ) + Na(r, F) + No(r, G)

GI
+ON(r, F) + N(,G) + 20k~ ON G, F) + 2N (v, )
1
+(/€—1)N(T,G’1)+N1§( G/)+dN( %)
+dN(7”ﬁ>_dN( FJ*‘ZNW( ;1)+S(T)

< (d(k 1)+ k+2)N(r.g) + (d+ DN (. gl)

-s—(d(k—kl)—i—k)iN(r,ng)—F(d—i—l) Zl: miN(T,gEQ)

i=v+1
1 )

4 (2k + 2)N(r, f) + 2N (r, fl) + (d(k + 1) + 2k) Z N(r, ;

1

+d+2) Y miN(r,f_Ci

i=v+1

) +an(r

) +S(r)

l
< (d(k+1)+k+4+1/(d(k+1)+k)+(d+1) > mf)T(T,g)
1=v—+1

1
f-B

l
+ (d +2k+6+v(dk+1)+2k) + (d+2) Y mi)T(r, f)+S(r).
1=v+1
Therefore

l
(3.9) <dq —d—2k—6—v(dk+1)+2k)— (d+2) Y ml)T(r, )
1=v+1
l
< (d(k+ Dtk+d+vdk+1)+k)+(d+1) Y mi>T(r,g) +S(r).
i=v+1
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Similarly,
(3.10)

l
(dq—d—?k—6—u(d(k—|—1)+2k)—(d—|—2) > mi)T(r,g)

i=v+1

l
< (d(k+ D+k+4+v(dk+1)+k)+d+1) Y mi>T(r,f) +S(r).
i=v—+1

Combining (3.9) and (3.10), we get

l

(dq—d(k—l—?)—3k—10—1/(2d(k+1)—|—3k)—(2d—|—3) Z mi) (T(r, f)+T(r,g)) < S(r).

i=v+1

!
Thus, when ¢ > k424 (3k + 10)/d +v(2k + 2+ 3k/d) + (24 3/d) > m;, we have

a contradiction. This proves the theorem.

1=v+1 D

Proof of Theorem 1.4. The proof of this theorem follows from Theorem 1.3 and

Lemma 2.9. O
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