Online first

ON THE DISK-CYCLIC LINEAR RELATIONS

Mohamed Amouch, Ali Ech-Chakouri, Hassane Zguitti

Received February 9, 2024. Published online December 3, 2024. Communicated by Laurian Suciu

Abstract. The study of linear dynamical systems for linear relations was initiated by C.-C. Chen et al. in (2017). Then E. Abakumov et al. extended hypercyclicty to linear relations in (2018). We extend the concept of disk-cyclicity studied in M. Amouch, O. Benchiheb (2020), Z. Z. Jamil, M. Helal (2013), Y.-X. Liang, Z.-H. Zhou (2015), Z. J. Zeana (2002) for linear operators to linear relations.

Keywords: hypercyclicity; linear relation; disk-cyclic linear relation; disk transitive linear relation

MSC 2020: 47A06, 47A16, 37B20

1. INTRODUCTION

Let H and K be two complex infinite dimensional separable Hilbert spaces. We denote by $\mathcal{L}(H, K)$ (or $\mathcal{B}(H, K)$) the set of all linear operators (or bounded linear operators) acting from H into K. When K = H, we write $\mathcal{B}(H) = \mathcal{B}(H, H)$ and $\mathcal{L}(H) = \mathcal{L}(H, H)$. One of the most significative notions of linear dynamical properties is the hypercyclicity. An operator $T \in \mathcal{B}(H)$ is said to be *hypercyclic* if there exists a vector $x \in H$ such that the *orbit*

$$Orb(T, x) := \{T^n x \colon n \ge 0\}$$

is dense in H.

If S is the unilateral backward shift on $l^2(\mathbb{N})$, then λS is hypercyclic if and only if $|\lambda| > 1$, see [18]. This motives the following notion introduced in [21] and studied by [5], [6], [7], [13], [14], [15], [20], [21]. An operator $T \in \mathcal{B}(H)$ is said to be *disk-cyclic* if there exists a vector x in H such that the set

$$\mathbb{D}\operatorname{Orb}(T, x) := \{ \alpha T^n x \colon \alpha \in \mathbb{D}, \ n \ge 0 \}$$

DOI: 10.21136/MB.2024.0015-24

is dense in H, where $\mathbb{D} := \{ \alpha \in \mathbb{C} : |\alpha| \leq 1 \}$. In this case, the vector x is called a *disk-cyclic vector* for T.

An equivalent concept of disk-cyclicity is the disk transitivity. A bounded operator T on H is said to be *disk transitive* [7] if for any pair (U, V) of nonempty open subsets of H there exist $\alpha \in \mathbb{D} \setminus \{0\}$ and $n \ge 0$ such that

$$\alpha T^n(U) \cap V \neq \emptyset.$$

A disk-cyclicity criterion that can be used to prove that an operator is disk-cyclic is one of the most important characterization of the disk-cyclicity. A bounded linear operator T satisfies the *disk-cyclicity criterion* if there exist two dense sets $\mathcal{D}_1, \mathcal{D}_2 \subset X$, an increasing sequence of positive integers $\{n_k\}$, a sequence $\{\alpha_{n_k}\}$ in $\mathbb{D} \setminus \{0\}$ and a sequence of maps $S_{n_k}: \mathcal{D}_2 \to H$ provided that:

(i) $\alpha_{n_k} T^{n_k} x \to 0$ for every $x \in \mathcal{D}_1$;

- (ii) $\alpha_{n_k}^{-1} S_{n_k} y \to 0$ for every $y \in \mathcal{D}_2$;
- (iii) $T^{n_k}S_{n_k}y \to y$ for every $y \in \mathcal{D}_2$.

Another disk-cyclic criterion which is equivalent to the above criterion was introduced in [13]. For $T \in \mathcal{B}(H)$ we say that T satisfies the *three open sets conditions* for disk-cyclicity if for any pair (U, V) of nonempty open sets in H and for any neighbourhood W of zero in H there exist $n \ge 0$ and $\alpha \in \mathbb{D}$ such that

$$\alpha T^n(U) \cap W \neq \emptyset$$
 and $\alpha T^n(W) \cap V \neq \emptyset$.

In [1] Abakumov et al. extended hypercyclicity to linear relation, and Chen et al. [10] studied some linear dynamical system notions for linear relation. Motivated by these generalizations, we extend, in this paper, the concept of disk-cyclicity and related concepts to linear relations. In Section 2, we recall some basic properties of linear relations that we will need in the sequel. Section 3 is devoted to introducing and to studying the disk-cyclicity of a linear relation. We show that this property is stable under quasi-conjugacy. We also show that if a linear relation T is disk-cyclic, then the range of $T - \lambda I$ is dense in H for every $\lambda \in \mathbb{D}$. As a consequence, the eigenvalues of the adjoint of a disk-cyclic linear relation are outside \mathbb{D} . In the last section, we introduce and we characterize the notion of disk transitive linear relation. Among other things, we show that a linear relation is disk transitive if and only if it is disk-cyclic.

2. Linear relations

From [1], [2], [10], [11] we recall some basic definitions and notations of linear relations. A linear relation or a multivalued linear operator T on H is a mapping from a subspace

$$\mathcal{D}(T) := \{ x \in X \colon Tx \text{ is a nonempty subset of } H \}$$

called the domain of T into $2^H \setminus \emptyset$, the set of all non empty subsets of H, provided that

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y)$$

for all $x, y \in \mathcal{D}(T)$ and all nonzero scalars λ and μ . We denoted by $\mathcal{LR}(H)$ the set of all linear relations on H. Let $T \in \mathcal{LR}(H)$. Then for $x \in \mathcal{D}(T), y \in Tx$ if and only if Tx = y + T(0). Notice that $T(0) = \{0\}$ if and only if T maps the points of its domain to singletons; in this case T is said to be a *single valued operator*.

A linear relation T on H is uniquely determined by its graph G(T), which is defined by

$$G(T) := \{ (x, y) \in H \times H \colon x \in \mathcal{D}(T) \text{ and } y \in T(x) \}.$$

The inverse of T is the linear relation T^{-1} defined by

$$G(T^{-1}) := \{ (y, x) \in H \times H : (x, y) \in G(T) \}.$$

For T and $S \in \mathcal{LR}(H)$, the linear relations T + S and TS are defined respectively by

$$G(T+S) := \{ (x, y+z) \in H \times H : (x, y) \in G(T) \text{ and } (x, z) \in G(S) \}$$

and

$$G(TS) := \{(x, y) \in H \times H : \exists z \in H \text{ such that } (x, z) \in G(S) \text{ and } (z, y) \in G(T)\}.$$

For $T \in \mathcal{LR}(H)$, the image of a subset M of H by T and the inverse image of a subset N of H by T^{-1} are defined respectively by

$$T(M) := \bigcup_{x \in \mathcal{D}(T) \cap M} Tx \text{ and } T^{-1}(N) := \{x \in D(T) \colon Tx \cap Y \neq \emptyset\}$$

The subspace ker $(T) := T^{-1}(0)$ is called the kernel of T and $R(T) := T(\mathcal{D}(T))$ is the range of T.

Lemma 2.1 ([2], Lemma 2.5). Let A, B and $C \in \mathcal{LR}(H)$. Then: (i) $(A + B)C \subset AC + BC$. If $C(0) \subset \ker(A) \cup \ker(B)$, then

$$(A+B)C = AC + BC.$$

(ii) If A is everywhere defined, then A(B+C) = AB + AC.

For a positive integer n, T^n is defined as follows: $T^0 = I$ (the identity operator in H), $T^1 = T$ and if T^{n-1} is defined, then

$$T^n x := TT^{n-1} x = \bigcup_{y \in \mathcal{D}(T) \cap T^{n-1} x} Ty,$$

where $\mathcal{D}(T^n) := \{ x \in \mathcal{D}(T^{n-1}) \colon \mathcal{D}(T) \cap T^{n-1}x \neq \emptyset \}.$

For $y \in D(T^{-1}) := R(T)$, the inverse image of y by T is defined by

$$T^{-1}y := \{x \in D(T) : y \in Tx\}$$

By induction, we can show that $(T^n)^{-1} = (T^{-1})^n$ for all $n \in \mathbb{N}$.

We say that $T \in \mathcal{LR}(H)$ is continuous if for each neighbourhood V in R(T), $T^{-1}(V)$ is a neighbourhood in $\mathcal{D}(T)$. If $\mathcal{D}(T) = H$ and T is continuous, then in this case, T is said to be bounded. T is closed if its graph G(T) is closed. The set of all closed and bounded linear relations will be denoted by $\mathcal{BCR}(H)$. Notice that if Tis closed, then T(0) is closed. We say that $T \in \mathcal{BCR}(H)$ satisfies the stabilization property [8] if $T(0) = T^2(0)$.

The adjoint T^* of $T \in \mathcal{LR}(H)$ is defined by

$$G(T^*) := \{ (y, y') \in H \times H : \langle x', y \rangle = \langle y', x \rangle \ \forall (x, x') \in G(T) \}$$

and we have (see [11], [19])

$$\operatorname{ker}(T^*) = R(T)^{\perp}$$
 and $T^*(0) = \mathcal{D}(T)^{\perp}$.

If $\overline{\mathcal{D}(T)} = H$, then T^* is a single valued operator.

A linear operator S is called a *selection* of T if $\mathcal{D}(S) = \mathcal{D}(T)$ and

$$Tx = Sx + T(0) \quad \forall x \in \mathcal{D}(T).$$

Moreover, if S is continuous, then T is continuous.

Linear relations are studied by numerous mathematicians, see for instance [2], [3], [4], [8], [9], [11], [16], [17], [19] and the reference therein. In the sequel, all linear relations are nonzero and satisfy $\overline{\bigcup_{n\geq 1} T^n(0)} \neq H$.

3. DISK-CYCLIC LINEAR RELATIONS

In the same direction as in [1], [10], we introduce the notion of disk-cyclicity for linear relations.

Definition 3.1. Let $T \in \mathcal{BCR}(H)$. We say that T is a *disk-cyclic linear relation* if there exist a nonzero vector $x \in H$ such that

$$\mathbb{D}\operatorname{Orb}(T,x) := \bigcup_{n \geqslant 0} \bigcup_{\alpha \in \mathbb{D}} \alpha T^n x$$

is dense in H. In this case, the vector x is called a *disk-cyclic vector* of T and $\mathbb{D}\operatorname{Orb}(T, x)$ is the *disk-orbit* of T at x.

The set of all disk-cyclic linear relations on a separable Hilbert space H and the set of all disk-cyclic vectors for T are respectively denoted by $\mathbb{D}C\mathcal{R}(H)$ and $\mathbb{D}C\mathcal{R}(T)$, with $\mathbb{D}C\mathcal{R}(T) = \emptyset$ if $T \notin \mathbb{D}C\mathcal{R}(H)$.

Following [1], a relation $T \in \mathcal{BCR}(H)$ is hypercyclic if there exists a sequence $\{x_m, m \in \mathbb{N}\}$ provided that:

- (i) $\{x_m, m \in \mathbb{N}\}$ is dense in H,
- (ii) for each m, $\bigcup_{n \in \mathbb{N}} T^n x_m$ is dense in H.

Remark 3.1. Let $T \in \mathcal{BCR}(H)$ be a bounded linear relation such that $\overline{T^n(0)} \neq H$ for each $n \ge 1$ and assume that T satisfies the stabilization property. If T is a hypercyclic linear relation, then T is a disk-cyclic linear relation. Indeed, suppose that T is a hypercyclic linear relation, then by [1], Corollary 2.1 there exists a vector x in H such that $\bigcup_{n \in \mathbb{N}} T^n x$ is dense in H. We then have

$$H = \overline{\bigcup_{n \in \mathbb{N}} T^n x} \subset \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \ge 0} \alpha T^n x} = \overline{\mathbb{D}\operatorname{Orb}(T, x)} \subset H.$$

Therefore, T is a disk-cyclic linear relation.

In general, T being a disk-cyclic linear relation does not imply that T is a hypercyclic linear relation, see for instance [7], Example 2.20.

In the following example, we show that every linear relation which has a disk-cyclic selection is a disk-cyclic linear relation.

Example 3.1. Let $A \in \mathcal{B}(X)$ be a selection of a linear relation $T \in \mathcal{BCR}(H)$. If A is disk-cyclic, then T is a disk-cyclic linear relation. Indeed, if A is a selection of

a linear relation $T \in \mathcal{BCR}(H)$, then Tx = Ax + T(0) for all $x \in H$. By Lemma 2.1, we have

$$T^{2}x = T(Tx) = T(Ax + T(0)) = TAx + T^{2}(0) = A^{2}x + TA(0) + T^{2}(0)$$
$$= A^{2}x + T(0) + T^{2}(0) = A^{2}x + T^{2}(0).$$

By induction, we can prove that

$$T^n x = A^n x + T^n(0) \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Since A is a disk-cyclic linear operator, then

$$H = \overline{\{\alpha A^n x \colon n \ge 0, \alpha \in \mathbb{D}\}} \subset \overline{\mathbb{D}\operatorname{Orb}(T, x)} \subset H.$$

Consequently, we obtain T is a disk-cyclic linear relation.

In the following example, we show that every noninjective disk-cyclic linear operator is a selection of a disk-cyclic linear relation.

Example 3.2. Let $S \in \mathcal{B}(H)$ be a disk-cyclic linear operator such that $\ker(S) \neq \{0\}$, we consider the bounded linear relation defined by

$$T: \ H \to 2^H \setminus \emptyset,$$
$$x \mapsto S^{-1}S^2(x).$$

Then S is a selection of T. Indeed, we have

$$Tx = S^{-1}S^{2}(x) = S^{-1}S(Sx) = Sx + \ker(S) = Sx + T(0)$$

for all $x \in \mathcal{D}(T) = H$, which means that S is a selection of T. Since S is disk-cyclic linear operator, then by Example 3.1, we deduce that T is a disk-cyclic linear relation.

E x a m p l e 3.3. Let S be the bounded linear operator acting on $l_2(\mathbb{N})$ as follows:

$$S: \ l_2(\mathbb{N}) \to l_2(\mathbb{N}),$$
$$x = (x_1, x_2, \ldots) \mapsto 2(x_2, x_3, \ldots)$$

Then S is a disk-cyclic linear operator by Example 3.3 in [7]. Let T be the bounded linear relation defined by

$$T: \ l_2(\mathbb{N}) \to 2^{l_2(\mathbb{N})} \setminus \emptyset,$$
$$x \mapsto Sx + S^{-1}(0)$$

Then T is a disk-cyclic linear relation since S is a selection of T.

Proposition 3.1. Let $T \in \mathcal{BCR}(H)$, $S \in \mathcal{BCR}(K)$ and $G \in \mathcal{B}(H, K)$ such that SG = GT and R(G) is dense in K. Then

$$G(\mathbb{D}C\mathcal{R}(T)) \subset \mathbb{D}C\mathcal{R}(S).$$

In particular, if T is disk-cyclic, then S is disk-cyclic.

Proof. If T is not disk-cyclic, then $\mathbb{DCR}(T) = \emptyset$ and hence, $G(\mathbb{DCR}(T)) = \emptyset \subset \mathbb{DCR}(S)$. Now suppose T is disk-cyclic. Let $x \in \mathbb{DCR}(T)$, then $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H. We thus get

$$\overline{\mathbb{D}\operatorname{Orb}(S,Gx)} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 0} \alpha S^n Gx} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 0} \alpha GT^n x}$$
$$= \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 0} \alpha G(T^n x)} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 0} G(\alpha T^n x)}$$
$$= \overline{G\left(\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 0} \alpha T^n x\right)} \supseteq G\left(\overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 0} \alpha T^n x}\right)$$
$$= G(H) = R(G).$$

Since R(G) is dense in K, then $\mathbb{D}\operatorname{Orb}(S, Gx)$ is also dense in K. Therefore Gx is an element of $\mathbb{DCR}(S)$.

Corollary 3.1. Let $T \in \mathcal{BCR}(H)$ and $G \in \mathcal{B}(X)$. If TG = GT and R(G) is dense in H, then:

- (i) $Gx \in \mathbb{DCR}(T)$ for every $x \in \mathbb{DCR}(T)$,
- (ii) $\lambda \mathbb{D}C\mathcal{R}(T) = \mathbb{D}C\mathcal{R}(T)$ for all $\lambda \in \mathbb{C} \setminus \{0\}$.

Lemma 3.1 ([1], Lemma 2.1). Let A and B be two subsets of a Banach space X with $int(\overline{A}) = \emptyset$. Then

$$\operatorname{int}(\overline{B}) = \operatorname{int}(\overline{A} \cup \overline{B}).$$

Proposition 3.2. Let $T \in \mathcal{BCR}(H)$. If T is disk-cyclic, then the range of T is dense in H.

Proof. Suppose that T is a disk-cyclic linear relation. Then there exists a nonzero vector $x \in H$ such that $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H. We set

$$\mathcal{D}_x := \{ \alpha x \colon \alpha \in \mathbb{D} \}$$
 and $A = \bigcup_{n \ge 1} \bigcup_{\alpha \in \mathbb{D}} \alpha T^n x.$

Let $y \in \mathbb{D}\operatorname{Orb}(T, x) \setminus \mathcal{D}_x$, then there exist $n \ge 1$ and $\alpha \in \mathbb{D}$ such that $y \in \alpha T^n x$. If $\alpha = 0$, then y = 0, which is a contradiction with $0 \in \mathcal{D}_x$. So, assume that $\alpha \neq 0$, then

$$y \in \alpha T^n x = T^n(\alpha x) \subset R(T^n) \subset R(T)$$

Therefore

$$(3.1) \qquad \qquad \mathbb{D}\operatorname{Orb}(T,x) \setminus \mathcal{D}_x \subset \overline{R(T)}.$$

Since $\overline{\operatorname{span}\{x\}} = \operatorname{span}\{x\} \neq H$, then $\operatorname{int}(\operatorname{span}\{x\}) = \emptyset$. Furthermore, as \mathcal{D}_x is a subset of $\operatorname{span}\{x\}$, we obtain $\operatorname{int}(\overline{\mathcal{D}_x}) = \emptyset$. Using Lemma 3.1, we get

$$\operatorname{int}(\overline{\mathcal{D}_x} \cup \overline{A}) = \operatorname{int}(\overline{A}).$$

On the other hand, we have

$$H = \operatorname{int}(H) = \operatorname{int}(\overline{\mathbb{D}\operatorname{Orb}(T, x)}) = \operatorname{int}(\overline{A \cup \mathcal{D}_x}) = \operatorname{int}(\overline{A \cup \mathcal{D}_x}) = \operatorname{int}(\overline{A}) \subset \overline{A} \subset H,$$

which implies that A is dense in H.

Now, we show that $\mathcal{D}_x \subset R(T)$. Let $\alpha \in \mathbb{D} \setminus \{0\}\}$, then

$$\alpha x \in H = \overline{\mathbb{D}\operatorname{Orb}(T, x) \setminus \mathcal{D}_x}.$$

Hence, there exists a sequence $\{y_i\}$ in $\mathbb{D}\operatorname{Orb}(T, x) \setminus \{\alpha x \colon \alpha \in \mathbb{D}\}$ such that $\{y_i\}$ converges to αx , as $i \to \infty$. So, for all $i \ge 1$ there exist $n_i \ge 1$ and $\alpha_i \in \mathbb{D} \setminus \{0\}$ such that

$$y_i \in \alpha_i T^{n_i} x \subset R(T) \quad \text{and} \quad y_i \to \alpha x.$$

Then

$$(3.2) \mathcal{D}_x \subset \overline{R(T)}$$

Combining (3.1) and (3.2), we conclude that

$$\mathbb{D}\operatorname{Orb}(T,x) \subset \overline{R(T)} \subset H.$$

As $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H, then the range of T is dense in H.

R e m a r k 3.2. In general, the converse of Proposition 3.2 is not true. Indeed, let $A \in \mathcal{B}(l_2(\mathbb{N}))$ be the bounded operator defined by

$$A(x_1, x_2, \ldots) = \frac{1}{2}(x_2, x_3, \ldots)$$

Then the range of A is dense in $l_2(\mathbb{N})$ and by Example 2.22 in [12], A is not hypercyclic. Furthermore, according to [7], Corollary 3.6, A is not disk-cyclic.

Online first

 \Box

The following result is [11], Exercise II.3.21, but for the convenience of the reader we give here a proof.

Lemma 3.2. Let $T \in \mathcal{BCR}(H)$ and let M be a nonempty subset of H. Then

$$T(\overline{M}) \subset \overline{T(M)}.$$

Proof. Since T is continuous and closed, then according to [11], Corollary II 4.6, T has a continuous selection A and T(0) is closed. As A is continuous, then $A(\overline{M}) \subset \overline{A(M)}$. Therefore,

$$T(\overline{M}) = A(\overline{M}) + T(0) \subset \overline{A(M)} + T(0) \subset \overline{A(M) + T(0)} = \overline{T(M)}.$$

Proposition 3.3. Let $T \in \mathbb{DCR}(H)$ and $S \in \mathcal{BCR}(H)$ be such that TS = ST, T(0) = TS(0) and the range of S is dense in H. Then

$$Sx \subset \mathbb{D}C\mathcal{R}(T)$$

for all $x \in \mathbb{DCR}(T)$.

Proof. Let x be a disk-cyclic vector for T. Then the set $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in *H*. Now, let $y \in Sx$. Then

$$TSx = T(y + S(0)) = Ty + TS(0) = Ty + T(0) = Ty.$$

Since TS = ST, then

$$ST^n x = T^n S x = T^n y$$

for all $n \ge 1$. Since $x \in \mathbb{DCR}(T)$, then $\mathbb{D}\operatorname{Orb}(T, x) \setminus \mathcal{D}_x$ is also dense in H (see the proof of Proposition 3.2). By Lemma 3.2, we have

$$\begin{split} R(S) &= S(H) = S(\overline{\mathbb{D}\operatorname{Orb}(T,x) \setminus \mathcal{D}_x}) \subset \overline{S(\mathbb{D}\operatorname{Orb}(T,x) \setminus \mathcal{D}_x)} \\ &= \overline{S\Big(\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha T^n x\Big)} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} S(\alpha T^n x)} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha S T^n x} \\ &= \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha T^n S x} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha T^n y} \subset \overline{\mathbb{D}\operatorname{Orb}(T,y)} \subset H. \end{split}$$

Since the range of S is dense in H, we get that $\mathbb{D}\operatorname{Orb}(T, y)$ is dense in H. Therefore, y is a disk-cyclic vector for T and so Sx is a subset of $\mathbb{DCR}(T)$.

Theorem 3.1. Let $T \in \mathcal{BCR}(H)$ satisfy the criterion of stabilization. Then T is a disk-cyclic linear relation if and only if T^p is a disk-cyclic linear relation for all $p \in \mathbb{N}$.

Proof. Suppose that T is a disk-cyclic linear relation. Then by Proposition 3.2, the range of T is dense in H. Since $T(0) = T^2(0)$, then by virtue of Proposition 3.3,

(3.3)
$$T(\mathbb{D}\mathcal{C}\mathcal{R}(T)) \subset \mathbb{D}\mathcal{C}\mathcal{R}(T).$$

Hence, by induction we have

$$T^n(\mathbb{D}C\mathcal{R}(T)) \subset \mathbb{D}C\mathcal{R}(T) \quad \forall n \ge 1.$$

Now, we show that T^2 is a disk-cyclic linear relation. By assumption there exists $x \in H$ such that $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H. Let $y \in T^n x \subset \mathbb{D}C\mathcal{R}(T)$. Using the fact that $T(0) = T^2(0)$ and Lemma 2.1, we get

$$T^{2n}x = T^nT^nx = T^n(y + T^n(0)) = T^ny + T^{2n}(0) = T^ny + T^n(0) = T^ny$$

for all $n \ge 1$. Consequently,

$$\mathbb{D}\operatorname{Orb}(T^2, x) \setminus \mathcal{D}_x = \mathbb{D}\operatorname{Orb}(T, y) \setminus \mathcal{D}_y.$$

Since y is a disk-cyclic vector for T, it follows from the proof of Proposition 3.2 that $\mathbb{D}\operatorname{Orb}(T, y) \setminus \mathcal{D}_y$ is also dense in H. Therefore $\mathbb{D}\operatorname{Orb}(T^2, x)$ is dense in H, which implies that T^2 is a disk-cyclic linear relation. By induction, we show that for all $p \ge 1$, T^p is a disk-cyclic linear relation.

Let $T \in \mathcal{LR}(H)$ and M be a subspace of H. Then the restriction of T to M denoted by T_M is the linear relation defined by

$$G(T_M) := G(T) \cap (M \times H).$$

Lemma 3.3. Let $T \in \mathcal{LR}(H)$ and M be a nontrivial closed subspace of H such that $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$. If P is the orthogonal projection onto M^{\perp} ,

$$(TP)^n = T^n P = PT^n$$

for all $n \ge 1$.

Proof. Since H is a Hilbert space and M is a closed subspace of H, then $H = M \oplus M^{\perp}$. Let $x \in H$, then there exist $a \in M$ and $b \in M^{\perp}$ such that x = a + b. Since $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$,

$$PTx = P(Ta + Tb) = PTb = Tb = TPx.$$

Hence TP = PT. By induction, we obtain $(TP)^n = T^n P = PT^n$, for all $n \ge 1$. \Box

Proposition 3.4. Let $T \in \mathbb{DCR}(H)$. Let M be a nontrivial closed subspace of H such that $T(M) \subset M$ and let P be the orthogonal projection onto M^{\perp} . Then

$$Px \neq 0$$

for all $x \in \mathbb{DCR}(T)$.

Proof. Let $x \in \mathbb{DCR}(T) \subset H$. For the sake of contradiction assume that Px = 0. So, $x \in M$. As $T(M) \subset M$, then $\alpha T^n x \subset \alpha T^n M \subset \alpha M = M$ for all $\alpha \in \mathbb{D} \setminus \{0\}$ and all $n \ge 0$. This implies that

$$H = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \ge 0} \alpha T^n x} \subset \overline{M} = M,$$

which is a contradiction. Therefore $Px \neq 0$.

Proposition 3.5. Let $T \in \mathbb{DCR}(H)$ and M be a nontrivial subspace of H such that $T(M) \subset M$ and $T(M^{\perp}) \subset M^{\perp}$. Then T_M and $T_{M^{\perp}}$ are disk-cyclic linear relations.

Proof. Let P be the bounded projection onto M^{\perp} . Since T is a disk-cyclic linear relation, there exists $x \in H$ such that the set $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H. It follows from the proof of Proposition 3.2 that $\mathbb{D}\operatorname{Orb}(T, x) \setminus D_x$ is also dense in H. As $H = M \oplus M^{\perp}$, there exist $x_1 \in M$ and $x_2 \in M^{\perp}$ such that $x = x_1 + x_2$. Hence $Px = x_2$. By Lemma 3.3, we have $(TP)^n = T^n P = PT^n$ for all $n \ge 1$. Therefore we obtain

$$M^{\perp} = P(H) = P(\overline{\mathbb{D}\operatorname{Orb}(T, x) \setminus \mathcal{D}_x}) \subset \overline{P(\mathbb{D}\operatorname{Orb}(T, x) \setminus \mathcal{D}_x)} = \overline{P\left(\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha T^n x\right)}$$
$$= \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha P T^n x} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha T^n P x} = \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha (TP)^n x_2}$$
$$= \overline{\bigcup_{\alpha \in \mathbb{D}} \bigcup_{n \geqslant 1} \alpha T^n_{M^{\perp}} x_2} \subset \overline{\mathbb{D}\operatorname{Orb}(T_{M^{\perp}}, x_2)} \subset \overline{M^{\perp}} = M^{\perp}.$$

Finally, we conclude that $T_{M^{\perp}}$ is a disk-cyclic linear relation. With the same argument we show that T_M is also a disk-cyclic linear relation.

Online first

Let $\{H_i\}_{i=1}^n$ be a family of separable Hilbert spaces and $T_i \in \mathcal{BCR}(H_i)$ for all $i \in \{1, \ldots, n\}$. We define (see [10])

$$\bigoplus_{i=1}^{n} H_i := \{ (x_1, \dots, x_n) \colon x_i \in H_i, \ 1 \leq i \leq n \}$$

and

$$\bigoplus_{i=1}^{n} T_{i}x := \{ (y_{1}, \dots, y_{n}) \colon y_{i} \in T_{i}x_{i}, \ 1 \leq i \leq n \}, \text{ where } x = (x_{1}, \dots, x_{n}).$$

Let $k \in \mathbb{N}$, then

$$\left(\bigoplus_{i=1}^{n} T_i\right)^k x = \bigoplus_{i=1}^{n} T_i^k x.$$

Proposition 3.6. Let $T_i \in \mathcal{BCR}(H_i)$ for all $i \in \{1, \ldots, m\}$. If $\bigoplus_{i=1}^m T_i$ is a disk-cyclic linear relation, then T_i is a disk-cyclic linear relation for each $i \in \{1, \ldots, m\}$.

Proof. Let $y = (y_1, \ldots, y_m) \in \bigoplus_{i=1}^m H_i$. Since $\bigoplus_{i=1}^m T_i$ is a disk-cyclic linear relation, then there exists $x = (x_1, \ldots, x_m) \in \mathbb{D}C\mathcal{R}\left(\bigoplus_{i=1}^m T_i\right)$ such that $\mathbb{D}\operatorname{Orb}\left(\bigoplus_{i=1}^m T_i, x\right)$ is dense in $\bigoplus_{i=1}^m H_i$. Therefore there exists $\{y_k\}$ in $\mathbb{D}\operatorname{Orb}\left(\bigoplus_{i=1}^m T_i, x\right)$ such that $\{y_k\}$ converges to y as $k \to \infty$. Then for all $k \in \mathbb{N}$ there exists $\{\alpha_k\}$ in \mathbb{D} and $\{n_k\}$ in \mathbb{N} such that

$$y_k \to y \text{ with } y_k \in \alpha_k \left(\bigoplus_{i=1}^m T_i \right)^{n_k} x$$

Let P_i be the bounded projection defined on $\bigoplus_{i=1}^m H_i$ such that $R(P_i) = H_i$. Then

$$P_i(y_k) \in \alpha_k T_i^{n_k} x_i \quad \text{and} \quad P_i(y_k) \to y_i.$$

Therefore $x_i \in \mathbb{D}C\mathcal{R}(T_i)$ for each $i \in \{1, \ldots, m\}$.

Online first

4. DISK TRANSITIVE LINEAR RELATION

Here we define and study the concept of disk transitive linear relation.

Definition 4.1. Let $T \in \mathcal{BCR}(H)$. We say that T is *disk transitive* if for any pair (U, V) of nonempty open subsets of H there exist $\alpha \in \mathbb{D} \setminus \{0\}$ and $n \ge 0$ such that $\alpha T^n(U) \cap V \ne 0$.

Let $S \in \mathcal{B}(H)$ be a disk transitive linear operator. Let U and V be two open nonempty sets of H, then there exist $n \ge 0$ and $\alpha \in \mathbb{D} \setminus \{0\}$ such that

$$\alpha S^n(U) \cap V \neq \emptyset.$$

Let $y \in \alpha S^n(U) \cap V$. Hence, there exists $x \in U$ such that $y = \alpha S^n x$.

If S is a selection of a linear relation $T \in \mathcal{BCR}(H)$, then by virtue of Example 3.1, we have $T^n x = S^n x + T^n(0)$ and hence, $y = \alpha S^n x \in \alpha T^n x \subset \alpha T^n U$. Consequently, $\alpha T^n(U) \cap V \neq \emptyset$ and therefore T is a disk transitive linear relation.

Proposition 4.1. Let $T \in \mathcal{BCR}(H)$, $S \in \mathcal{BCR}(K)$ and $A \in \mathcal{B}(H, K)$ be such that SA = AT and the range of A is dense in K. If T is a disk transitive linear relation, then S is a disk transitive linear relation.

Proof. Let U and V be two nonempty open subsets of K. Since A is bounded and with dense range, then $A^{-1}(U)$ and $A^{-1}(V)$ are two nonempty open subsets of H. As T is a disk transitive linear relation, there exist $n \ge 0$ and $\alpha \in \mathbb{D} \setminus \{0\}$ such that

$$\alpha T^n A^{-1}(U) \cap A^{-1}(V) \neq \emptyset.$$

Let $y \in A^{-1}(V)$ and $x \in A^{-1}(U)$ such that $y \in \alpha T^n x$. Since SA = AT, we obtain

$$\alpha S^n Ax = \alpha AT^n x = A(\alpha T^n x) = A(y + \alpha T^n(0)) = Ay + \alpha AT^n(0) = Ay + \alpha S^n A(0).$$

So, $Ay \in \alpha S^n Ax \subset \alpha S^n(U)$ and $Ay \in V$. Thus,

$$\alpha S^n(U) \cap V \neq \emptyset.$$

Finally, S is a disk transitive linear relation.

The following theorem gives a characterization of a disk transitive linear relation.

Theorem 4.1. Let $T \in \mathcal{BCR}(H)$. Then the following assertions are equivalent: (i) T is disk transitive.

Online first

(ii) For each pair (U, V) of nonempty open subsets of H there exist $|\alpha| \ge 1$ and $n \ge 0$ such that

$$\alpha T^{-n}(U) \cap V \neq \emptyset.$$

(iii) For any nonempty open subset U of H,

$$\bigcup_{\alpha\in\mathbb{D}\backslash\{0\}}\bigcup_{n\geqslant 0}\alpha T^n(U)$$

is dense in H.

(iv) For any nonempty open subset V of H,

$$\bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \bigcup_{n \ge 0} \alpha T^{-n}(V)$$

is dense in H.

Proof. (i) \Longrightarrow (ii). Let (U, V) be a pair of nonempty open subsets of H. Since T is disk transitive, then there exist $\alpha \in \mathbb{D} \setminus \{0\}$ and $n \ge 0$ such that $\alpha T^n(U) \cap V \ne \emptyset$. Hence

$$(\alpha U + T^{-n}(0)) \cap T^{-n}(V) \neq \emptyset.$$

Let $x \in (\alpha U + T^{-n}(0)) \cap T^{-n}(V)$. Then there exist $u \in U$, $y \in T^{-n}(0)$ and $v \in V$ such that $x = \alpha u + y$ and $x \in T^{-n}(v)$. Hence

$$T^{-n}(v) = x + T^{-n}(0) = \alpha u + y + T^{-n}(0) = \alpha u + T^{-n}(0)$$

which means that $\alpha u \in T^{-n}(v)$. We thus get $u \in \beta T^{-n}(V) \cap U$ with $|\beta| = 1/|\alpha| \ge 1$. Therefore $\beta T^{-n}(V) \cap U \neq \emptyset$.

(ii) \implies (i). It is similar to (i) \implies (ii).

(i) \iff (iii). Assume that T is a disk transitive linear relation. Let U be a nonempty open subset of H and let $(O_i)_{i \ge 1}$ be a countable basis of open sets of H. For each $i \ge 1$ we can find $n_i \ge 0$ and $\alpha_i \in \mathbb{D} \setminus \{0\}$ such that $\alpha_i T^{n_i}(U) \cap O_i \ne \emptyset$. We then obtain that

$$\bigcup_{\alpha\in\mathbb{D}\backslash\{0\}}\bigcup_{n\geqslant 0}\alpha T^n(U)$$

is dense in H.

Conversely, let U and V be two open nonempty subsets of H. Since the set

$$\bigcup_{\alpha \in \mathbb{D} \setminus \{0\}} \bigcup_{n \ge 0} \alpha T^n(U)$$

is dense in H, then there exist $\alpha \in \mathbb{D} \setminus \{0\}$ and $n \ge 0$ such that

$$\alpha T^n(U) \cap V \neq 0,$$

which means that T is a disk transitive linear relation.

(ii) \iff (iv). It is similar to (i) \iff (iii).

In the sequel, we denote by B(x, r) the open ball centered at $x \in H$ and with radius r > 0.

Theorem 4.2. Let $T \in \mathcal{BCR}(H)$. Then the following assertions are equivalent:

- (1) T is a disk transitive linear relation.
- (2) For each $(x, y) \in H^2$ there exist sequences of positive integers $\{n_k\}$, $\{x_k\}$ in H, $\{\alpha_k\}$ in $\mathbb{D} \setminus \{0\}$ and $\{y_k\}$ in H such that

$$x_k \to x, \quad y_k \to y \quad \text{and} \quad \alpha_k T^{n_k} x_k = y_k + T^{n_k}(0).$$

(3) For each $(x, y) \in H^2$ and for each neighbourhood W of 0 there exist $z, t \in H$, $\alpha \in \mathbb{D} \setminus \{0\}$ and $n \in \mathbb{N}$ such that

$$x-z \in W$$
, $t-y \in W$ and $\alpha T^n z = t + T^n(0)$.

Proof. (1) \implies (2): Suppose that T is disk transitive. Let $x, y \in H$ and let $B_k := B(x, 1/k)$ and $B'_k := B(y, 1/k)$ for all $k \ge 1$. Then B_k and B'_k are nonempty open subsets of H. As T is a disk transitive linear relation, then there exist two sequences $\{\alpha_k\} \subset \mathbb{D} \setminus \{0\}$ and $\{n_k\}$ in \mathbb{N} such that $T^{n_k}(\alpha_k B_k) \cap B'_k \ne \emptyset$ for all $k \ge 1$. Hence, there exists a sequence $\{y_k\}$ in H such that

$$y_k \in T^{n_k}(\alpha_k B_k) \cap B'_k$$

for all $k \ge 1$. Consequently, for each $k \ge 1$ there exists $x_k \in B_k$ such that

$$y_k \in T^{n_k}(\alpha_k x_k) \cap B'_k.$$

Therefore we have

$$\alpha_k T^{n_k} x_k = y_k + \alpha_k T^{n_k}(0) = y_k + T^{n_k}(0).$$

Moreover,

$$x_k \to x$$
 and $y_k \to y$.

Online first

(2) \implies (3): Assume that for each $(x, y) \in H^2$ there exist sequences $\{n_k\}$ in \mathbb{N} , $\{x_k\}$ in H, $\{\alpha_k\}$ in $\mathbb{D} \setminus \{0\}$ and $\{y_k\}$ in H provided that

$$x_k - x \to 0, \quad y_k - y \to 0 \text{ and } \alpha_k T^{n_k} x_k = y_k + T^{n_k}(0).$$

Let W be a neighbourhood of zero. Then there exists some $k_0 \ge 1$ such that $x - x_{k_0} \in W$ and $y_{k_0} - y \in W$. Set $z := x_{k_0}$ and $t := y_{k_0}$. We thus have

$$x - z \in W, \quad t - y \in W \quad \text{and} \quad \alpha_{k_0} T^{n_{k_0}} z = t + T^{n_{k_0}}(0).$$

(3) \Longrightarrow (1): Let U and V be two nonempty open subsets of H. Let $(x, y) \in U \times V$. For each $k \ge 1$, $W_k := B(0, 1/k)$ is a neighbourhood of zero. By assumption there exist sequences $\{x_k\}$ in H, $\{\alpha_k\}$ in $\mathbb{D} \setminus \{0\}$, $\{n_k\}$ in \mathbb{N} and $\{y_k\} \subset H$ such that

$$||x_k - x|| < \frac{1}{k}, \quad ||y_k - y|| < \frac{1}{k} \text{ and } y_k \in \alpha_k T^{n_k} x_k$$

Then $\{x_k\}$ converges to x and $\{y_k\}$ converges to y as $k \to \infty$. Therefore for k large enough we have $x_k \in U$ and $y_k \in V$. Thus

$$\emptyset \neq \alpha_k T^{n_k} x_k \cap V \subset \alpha_k T^{n_k} U \cap V$$

and we conclude that T is a disk transitive linear relation.

Lemma 4.1. Let $T \in \mathcal{BCR}(H)$. If $x \in \mathbb{DCR}(T)$, then for any nonempty open set U of H there exist $n \ge 0$ and $\gamma \in \mathbb{D} \setminus \{0\}$ such that

$$\gamma T^n x \cap U \neq \emptyset.$$

Proof. Since x is a disk-cyclic vector for T, then the set

$$\mathbb{D}\operatorname{Orb}(T,x) = \bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{D}} \alpha T^n x$$

is dense in H. Let U be a nonempty open subset of H. Then

$$\left(\bigcup_{n\geqslant 0}\bigcup_{\alpha\in\mathbb{D}}\alpha T^nx\right)\cap U\neq\emptyset.$$

Now, we distinguish two cases:

(i) If $0 \notin U$, then there exist $n \ge 0$ and $\alpha \in \mathbb{D} \setminus \{0\}$ such that

$$\alpha T^n x \cap U \neq \emptyset.$$

(ii) If $0 \in U$, then we can find an open set V of H such that

$$0 \notin V$$
 and $V \subset U$.

Using the above argument, we deduce that there exist $m \ge 0$ and $\beta \in \mathbb{D} \setminus \{0\}$ such that

$$\beta T^m x \cap V \neq \emptyset$$

and so

 $\beta T^m x \cap U \neq \emptyset.$

Finally, in both cases there exist $n \ge 0$ and $\gamma \in \mathbb{D} \setminus \{0\}$ such that $\gamma T^n x \cap U \neq \emptyset$. \Box

Proposition 4.2. Let $T \in \mathcal{BCR}(H)$. Then T is a disk transitive linear relation if and only if

$$\mathbb{D}\mathcal{CR}(T) = \bigcap_{k \in \mathbb{N}} \bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \alpha T^{-n}(V_k)$$

is a dense G_{δ} -set in H, where $(V_k)_{k \in \mathbb{N}}$ is a countable basis of open subsets of H.

Proof. Let T be disk-cyclic. Let $(V_k)_{k\in\mathbb{N}}$ be a countable basis of open subsets of H. From Lemma 4.1 we have

$$\begin{aligned} x \in \mathbb{D}\mathcal{CR}(T) &\iff \forall k \ge 1, \ V_k \cap \left(\bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{D}} \alpha T^n x\right) \neq \emptyset \\ &\iff \forall k \ge 1, \quad \exists \beta \in \mathbb{D} \setminus \{0\}, \quad \exists n \ge 0 \quad \text{such that} \quad V_k \cap \beta T^n x \neq \emptyset \\ &\iff \forall k \ge 1, \quad \exists \beta \in \mathbb{D} \setminus \{0\}, \quad \exists n \ge 0 \quad \text{such that} \quad \beta x \in T^{-n}(V_k) \\ &\iff \forall k \ge 1, \quad \exists \alpha \in \mathbb{C}, |\alpha| \ge 1, \quad \exists n \ge 0 \quad \text{such that} \quad x \in \alpha T^{-n}(V_k) \\ &\iff x \in \bigcap_{k \in \mathbb{N}} \bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \alpha T^{-n}(V_k). \end{aligned}$$

Now, we show that $\mathbb{D}C\mathcal{R}(T)$ is dense in H. For each $k \ge 1$ we set

$$O_k := \bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \alpha T^{-n}(V_k).$$

Since T is disk transitive, then by Theorem 4.1, O_k is dense in H. As O_k is an open set of H (see [1], Remark 2.2), by the Baire category theorem, we obtain $\bigcap_{k\in\mathbb{N}} O_k = \mathbb{D}C\mathcal{R}(T)$ is dense G_{δ} -set in H.

Conversely, let U and V be two nonempty open subsets of H. Since $(V_k)_{k\in\mathbb{N}}$ is a countable basis of open subsets of H and $\bigcap_{k\in\mathbb{N}} O_k = \mathbb{D}C\mathcal{R}(T)$ is dense in H, then

for $U = \bigcup_{k \in I} V_k$ with $I \subset \mathbb{N}$, we have $\bigcap_{k \in \mathbb{N}} O_k \cap U \neq \emptyset$. Hence, $O_k \cap U \neq \emptyset$ for all $k \in \mathbb{N}$. For $k \in I$ we have

$$\begin{split} \emptyset \neq O_k \cap V &= \left(\bigcup_{n \geqslant 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \geqslant 1} \alpha T^{-n}(V_k) \right) \cap V \\ &\subset \left(\bigcup_{n \geqslant 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \geqslant 1} \alpha T^{-n} \left(\bigcup_{i \in I} V_i \right) \right) \cap V \\ &= \left(\bigcup_{n \geqslant 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \geqslant 1} \alpha T^{-n}(U) \right) \cap V. \end{split}$$

Thus, $\left(\bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \alpha T^{-n}(U)\right) \cap V \neq \emptyset$ for all nonempty open subset V of H, which means that $\bigcup_{n \ge 0} \bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \alpha T^{-n}(U)$ is dense in H. Finally, by virtue of Theorem 4.1, we conclude that T is a disk transitive linear relation.

Theorem 4.3. Let $T \in \mathcal{BCR}(H)$. Then the following assertions are equivalent:

- (i) T is a disk transitive linear relation.
- (ii) T is a disk-cyclic linear relation.

Proof. Suppose that T is disk transitive, then by Proposition 4.2, $\mathbb{D}C\mathcal{R}(T)$ is dense in H. Hence, $\mathbb{D}C\mathcal{R}(T)$ is a nonempty set of H and so T is a disk-cyclic linear relation.

Conversely, assume that T is a disk-cyclic linear relation, then there exists a vector x in H such that the set $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H. Let (U, V) be a pair of nonempty open sets of H. Then

$$\mathbb{D}\operatorname{Orb}(T,x) \cap U \neq \emptyset$$
 and $\mathbb{D}\operatorname{Orb}(T,x) \cap V \neq \emptyset$.

According to Lemma 4.1, there exist $m, n \ge 0$ and $\alpha, \beta \in \mathbb{D} \setminus \{0\}$ such that

$$U \cap \alpha T^n x \neq \emptyset$$
 and $V \cap \beta T^m x \neq \emptyset$.

We choose $n \ge m$. Since $U \cap \alpha T^n x \ne \emptyset$ and $V \cap \beta T^m x \ne \emptyset$, there exist two elements z_1 and z_2 such that $z_1 \in U \cap \alpha T^n x$ and $z_2 \in V \cap \beta T^m x$. So, we distinguish two cases:

Case 1: $|\alpha| \leq |\beta|$. Since $z_2 \in \beta T^m x$ and $\beta \neq 0$,

$$z_{2} \in \beta T^{m} x \iff z_{2} \in T^{m}(\beta x) \iff (\beta x, z_{2}) \in G(T^{m}) \iff (z_{2}, \beta x) \in G((T^{m})^{-1})$$
$$\iff (z_{2}, \beta x) \in G((T^{-m})) \iff \beta x \in T^{-m} z_{2} \iff x \in \frac{1}{\beta} T^{-m} z_{2}.$$

Thus,

$$z_1 \in \alpha T^n x \subset \frac{\alpha}{\beta} T^{n-m} z_2 \subset \frac{\alpha}{\beta} T^{n-m}(V).$$

We set $p := n - m \ge 0$ and $\gamma := \alpha/\beta$. Therefore

$$\gamma T^p(V) \cap U \neq \emptyset$$
 with $p \ge 0$ and $\gamma \in \mathbb{D} \setminus \{0\}$.

Therefore T is a disk transitive linear relation.

Case 2: $|\beta| \leq |\alpha|$. As $(z_1, z_2) \in T^n x \times V$, then

$$z_1 \in \alpha T^n x \Longleftrightarrow x \in \frac{1}{\alpha} T^{-n} z_1,$$

which implies

$$z_2 \in \beta T^m x \subset \frac{\beta}{\alpha} T^{m-n} z_1 \subset \frac{\beta}{\alpha} T^{m-n}(U) \subset \gamma T^{-p}(U)$$

with p := n - m and $\gamma := \beta/\alpha$. Since $n \ge m$ and $|\beta| \le |\alpha|$,

$$\gamma T^{-p}(U) \cap V \neq \emptyset$$
 with $p \in \mathbb{N} \cup \{0\}$ and $\gamma \in \mathbb{D} \setminus \{0\}$.

Hence,

$$\emptyset \neq \gamma T^{-p}(U) \cap V \subset \gamma \Big(\bigcup_{\alpha \in \mathbb{C}, |\alpha| \geqslant 1} \bigcup_{n \geqslant 0} \alpha T^{-n}(U) \Big) \cap V$$

and so

$$\gamma \Big(\bigcup_{\alpha \in \mathbb{C}, |\alpha| \geqslant 1} \bigcup_{n \geqslant 0} \alpha T^{-n}(U) \Big) \cap V \neq \emptyset$$

for any nonempty open subset V of H. Thus, we deduce that the set

$$G := \gamma \Big(\bigcup_{\alpha \in \mathbb{C}, |\alpha| \ge 1} \bigcup_{n \ge 0} \alpha T^{-n}(U) \Big)$$

is dense in H.

Now, we consider the map h_{γ} defined on H by $h_{\gamma}(x) = \gamma^{-1}x$. Clearly, h_{γ} is a homeomorphism. Since h_{γ} is closed,

$$\overline{\bigcup_{\alpha\in\mathbb{C}, |\alpha|\geqslant 1}\bigcup_{n\geqslant 0}\alpha T^{-n}(U)} = \overline{\frac{1}{\gamma}G} = \overline{h_{\gamma}(G)} = h_{\gamma}(\overline{G}) = h_{\gamma}(H) = \frac{1}{\gamma}H = H$$

It follows from Theorem 4.1 that T is a disk transitive linear relation.

Online first

19

Theorem 4.4. Let $T \in \mathbb{D}C\mathcal{R}(H)$ and $\lambda \in \mathbb{D}$. Then the range of $T - \lambda I$ is dense in H.

Proof. If $\lambda = 0$, then by Proposition 3.2, R(T) is dense in H. Now, let $\lambda \in \mathbb{D} \setminus \{0\}$. Suppose that $R(T - \lambda I)$ is not dense in H. Since T is disk-cyclic, then by virtue of Proposition 4.2 and Theorem 4.3 there exists $x \in \mathbb{D}CR(T)$ such that $x \notin \overline{(T - \lambda I)H}$. By the Hahn Banach theorem, there exists a continuous linear functional ψ on H such that $\psi(x) \neq 0$ and $\psi(\overline{R(T - \lambda I)}) = \{0\}$. This implies that

$$\psi(Ty) - \lambda\psi(y) = \psi((T - \lambda I)y) = 0$$

for all $y \in H$. Hence, $\psi(Ty) = \lambda \psi(y)$. Using [9], Lemma 4.2, we get for all $n \ge 1$, $R(T^n - \lambda^n I) \subset R(T - \lambda I)$. Thus

(4.1)
$$\psi(T^n y) = \lambda^n \psi(y)$$

for all $n \ge 1$ and all $y \in H$.

Now since $\mathbb{D}\operatorname{Orb}(T, x)$ is dense in H, there exists $\{x_k\}$ in $\mathbb{D}\operatorname{Orb}(T, x)$ such that $\{x_k\}$ converges to 3x. Then $\psi(x_k) \to 3\psi(x)$ as $k \to \infty$. For each $k \ge 1$ there exists $n_k \ge 1$ and α_k in \mathbb{D} such that $x_k \in \alpha_k T^{n_k} x$. Using equality (4.1) and $T^{n_k} \alpha_k x = x_k + T^{n_k}(0)$, we obtain

$$\psi(x_k) = \psi(\alpha_k T^{n_k} x) = \alpha_k \psi(T^{n_k} x) = \alpha_k \lambda^{n_k} \psi(x).$$

Thus, $\alpha_k \lambda^{n_k} \psi(x) \to 3\psi(x)$. Since $|\alpha_k \lambda^{n_k}| \leq 1$ and $\psi(x) \neq 0$, $|\alpha_k \lambda^{n_k}| \to 3 \leq 1$ as $k \to \infty$, which is a contradiction. Finally, we conclude that the range of $T - \lambda I$ is dense in H.

As an immediate consequence of the previous results, we obtain the following corollary.

Corollary 4.1. Let $T \in \mathbb{D}C\mathcal{R}(H)$. Then

$$\sigma_p(T^*) \subset \mathbb{C} \setminus \mathbb{D}.$$

Proof. Suppose that $\sigma_p(T^*)$ is a nonempty subset of \mathbb{C} . Let $\lambda \in \mathbb{D}$, then, by Theorem 4.4, we deduce that $R(T - \lambda I)$ is dense in H. This implies that

$$\ker(T-\lambda I)^{\star} = R(T-\lambda I)^{\perp} = \overline{R(T-\lambda I)}^{\perp} = H^{\perp} = \{0\}.$$

Moreover, since λI is a bounded linear operator,

$$\ker(T - \lambda I)^* = \ker(T^* - \overline{\lambda}I) = \{0\},\$$

which implies that $\overline{\lambda} \notin \sigma_p(T^*)$. Since $\lambda \in \mathbb{D}$ is equivalent to $\overline{\lambda} \in \mathbb{D}$, we obtain $\lambda \notin \sigma_p(T^*)$. Thus, $\sigma_p(T^*)$ is a subset of $\mathbb{C} \setminus \mathbb{D}$.

A c k n o w l e d g e m e n t s. We are grateful to the referee for helpful comments and suggestions concerning this paper.

References

[1]	<i>E. Abakumov, M. Boudabbous, M. Mnif</i> : On hypercyclicity of linear relations. Result. Math. 73 (2018), Article ID 137, 17 pages.	$_{\mathrm{zbl}}$	MR	doi
[2]	T. Álvarez: Quasi-Fredholm and semi-B-Fredholm linear relations. Mediterr. J. Math. 14 (2017), Article ID 22, 26 pages.	\mathbf{zbl}	MR	doi
[3]	T. Álvarez, S. Keskes, M. Mnif: On the structure of essentially semi-regular linear rela- tions. Mediterr. J. Math. 16 (2019), Article ID 76, 20 pages.	$_{\mathrm{zbl}}$	MR	doi
[4]	T. Alvarez, A. Sandovici: Regular linear relations on Banach spaces. Banach J. Math. Anal. 15 (2021), Article ID 4, 25 pages.	$_{\mathrm{zbl}}$	MR	doi
[5]	M. Amouch, O. Benchiheb: Diskcyclicity of sets of operators and applications. Acta Math. Sin., Engl. Ser. 36 (2020), 1203–1220.	$_{\mathrm{zbl}}$	MR	doi
[6]	N. Bamerni, A. Kiliçman: Operators with diskcyclic vectors subspaces. J. Taibah Univ. Sci. 9 (2015), 414–419.	doi		
[7]	N. Bamerni, A. Kiliçman, M. S. M. Noorani: A review of some works in the theory of diskcyclic operators. Bull. Malays. Math. Soc. 39 (2016), 723-739.	$_{\mathrm{zbl}}$	${ m MR}$	doi
[8]	<i>H. Bouaniza, Y. Chamkha, M. Mnif</i> : Perturbation of semi-Browder linear relations by commuting Riesz operators. Linear Multilinear Algebra 66 (2018), 285–308.	\mathbf{zbl}	MR	doi
[9]	E. Chafai, M. Mnif: Ascent and essential ascent spectrum of linear relations. Extr. Math. 31 (2016), 145–167.	$_{\mathrm{zbl}}$	MR	
[10]	CC. Chen, J. A. Conejero, M. Kostić, M. Murillo-Arcila: Dynamics of multivalued linear operators. Open Math. 15 (2017), 948–958.	$_{\mathrm{zbl}}$	MR	doi
[11]	$R.\ Cross:$ Multivalued Linear Operators. Pure and Applied Mathematics 213. Marcel Dekker, New York, 1998.	\mathbf{zbl}	MR	
[12]	KG. Grosse-Erdmann, A. Peris Manguillot: Linear Chaos. Universitext. Springer, Berlin, 2011.	\mathbf{zbl}	MR	doi
[13]	Z. Z. Jamil, M. Helal: Equivalent between the criterion and the three open set's conditions in disk-cyclicity. Int. J. Contemp. Math. Sci. 8 (2013), 257–261.	\mathbf{zbl}	MR	doi
[14]	YX. Liang, ZH. Zhou: Disk-cyclicity and codisk-cyclicity of certain shift operators. Oper. Matrices 9 (2015), 831–846.	\mathbf{zbl}	MR	doi
[15]	<i>YX. Liang, ZH. Zhou</i> : Disk-cyclic and codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Belg. Math. Soc Simon Stevin 23 (2016), 203–215.	zbl	MR	doi
[16]	M. Mnif, R. Neji: Kato decomposition theorem for linear pencils. Filomat 34 (2020), 1157–1166.	$_{\mathrm{zbl}}$	MR	doi
[17]	M. Mnif, AA. Ouled-Hmed: Local spectral theory and surjective spectrum of linear relations. Ukr. Math. J. 73 (2021), 255–275.	$_{\mathrm{zbl}}$	MR	doi
[18]	S. Rolewicz: On orbits of elements. Stud. Math. 32 (1969), 17–22.	$^{\mathrm{zbl}}$	MR	doi
[13]	(2020), Article ID 68, 23 pages.	\mathbf{zbl}	MR	doi
[20]	Y. Wang, HG. Zeng: Disk-cyclic and codisk-cyclic weighted pseudo-shifts. Bull. Belg. Math. Soc Simon Stevin 25 (2018), 209–224.	zbl	MR	doi

[21] Z. J. Zeana: Cyclic Phenomena of Operators on Hilbert Space: Ph.D. Thesis. University of Bagdad, Bagdad, 2002.

Authors' addresses: Mohamed Amouch, Department of Mathematics, Faculty of Science El Jadida, University Chouaib Doukkali, Route Ben Maachou, 24000, El Jadida, Morocco, e-mail: amouch.m@ucd.ac.ma; Ali Ech-Chakouri, Hassane Zguitti (corresponding author), Department of Mathematics, Dhar El Mahraz Faculty of Science, Sidi Mohamed Ben Abdellah University, 30003 Fez, Morocco, e-mail: ali.echchakouri@usmba.ac.ma, hassane.zguitti@usmba.ac.ma.