
2024 MATHEMATICA BOHEMICA 22 pp

Online first

ON THE DISK-CYCLIC LINEAR RELATIONS

Mohamed Amouch, Ali Ech-Chakouri, Hassane Zguitti

Received February 9, 2024. Published online December 3, 2024.
Communicated by Laurian Suciu

Abstract. The study of linear dynamical systems for linear relations was initiated by
C.-C.Chen et al. in (2017). Then E.Abakumov et al. extended hypercyclicty to linear rela-
tions in (2018). We extend the concept of disk-cyclicity studied in M.Amouch, O.Benchiheb
(2020), Z. Z. Jamil, M.Helal (2013), Y.-X. Liang, Z.-H. Zhou (2015), Z. J. Zeana (2002) for
linear operators to linear relations.

Keywords: hypercyclicity; linear relation; disk-cyclic linear relation; disk transitive linear
relation

MSC 2020 : 47A06, 47A16, 37B20

1. Introduction

Let H and K be two complex infinite dimensional separable Hilbert spaces. We

denote by L(H,K) (or B(H,K)) the set of all linear operators (or bounded linear

operators) acting from H into K. When K = H, we write B(H) = B(H,H) and

L(H) = L(H,H). One of the most significative notions of linear dynamical properties

is the hypercyclicity. An operator T ∈ B(H) is said to be hypercyclic if there exists

a vector x ∈ H such that the orbit

Orb(T, x) := {Tnx : n > 0}

is dense in H.

If S is the unilateral backward shift on l2(N), then λS is hypercyclic if and only if

|λ| > 1, see [18]. This motives the following notion introduced in [21] and studied by

[5], [6], [7], [13], [14], [15], [20], [21]. An operator T ∈ B(H) is said to be disk-cyclic

if there exists a vector x in H such that the set

DOrb(T, x) := {αTnx : α ∈ D, n > 0}
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is dense in H, where D := {α ∈ C : |α| 6 1}. In this case, the vector x is called

a disk-cyclic vector for T .

An equivalent concept of disk-cyclicity is the disk transitivity. A bounded opera-

tor T on H is said to be disk transitive [7] if for any pair (U, V ) of nonempty open

subsets of H there exist α ∈ D \ {0} and n > 0 such that

αTn(U) ∩ V 6= ∅.

A disk-cyclicity criterion that can be used to prove that an operator is disk-cyclic is

one of the most important characterization of the disk-cyclicity. A bounded linear op-

erator T satisfies the disk-cyclicity criterion if there exist two dense sets D1,D2 ⊂ X,

an increasing sequence of positive integers {nk}, a sequence {αnk
} in D \ {0} and

a sequence of maps Snk
: D2 → H provided that:

(i) αnk
Tnkx→ 0 for every x ∈ D1;

(ii) α−1
nk
Snk

y → 0 for every y ∈ D2;

(iii) TnkSnk
y → y for every y ∈ D2.

Another disk-cyclic criterion which is equivalent to the above criterion was intro-

duced in [13]. For T ∈ B(H) we say that T satisfies the three open sets conditions

for disk-cyclicity if for any pair (U, V ) of nonempty open sets in H and for any

neighbourhood W of zero in H there exist n > 0 and α ∈ D such that

αTn(U) ∩W 6= ∅ and αTn(W ) ∩ V 6= ∅.

In [1] Abakumov et al. extended hypercyclicty to linear relation, and Chen et

al. [10] studied some linear dynamical system notions for linear relation. Motivated

by these generalizations, we extend, in this paper, the concept of disk-cyclicity and

related concepts to linear relations. In Section 2, we recall some basic properties of

linear relations that we will need in the sequel. Section 3 is devoted to introducing

and to studying the disk-cyclicity of a linear relation. We show that this property is

stable under quasi-conjugacy. We also show that if a linear relation T is disk-cyclic,

then the range of T − λI is dense in H for every λ ∈ D. As a consequence, the

eigenvalues of the adjoint of a disk-cyclic linear relation are outside D. In the last

section, we introduce and we characterize the notion of disk transitive linear relation.

Among other things, we show that a linear relation is disk transitive if and only if it

is disk-cyclic.
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2. Linear relations

From [1], [2], [10], [11] we recall some basic definitions and notations of linear

relations. A linear relation or a multivalued linear operator T on H is a mapping

from a subspace

D(T ) := {x ∈ X : Tx is a nonempty subset of H}

called the domain of T into 2H \ ∅, the set of all non empty subsets of H, provided

that

T (λx+ µy) = λT (x) + µT (y)

for all x, y ∈ D(T ) and all nonzero scalars λ and µ. We denoted by LR(H) the set

of all linear relations on H. Let T ∈ LR(H). Then for x ∈ D(T ), y ∈ Tx if and

only if Tx = y + T (0). Notice that T (0) = {0} if and only if T maps the points of

its domain to singletons; in this case T is said to be a single valued operator.

A linear relation T on H is uniquely determined by its graph G(T ), which is

defined by

G(T ) := {(x, y) ∈ H ×H : x ∈ D(T ) and y ∈ T (x)}.

The inverse of T is the linear relation T−1 defined by

G(T−1) := {(y, x) ∈ H ×H : (x, y) ∈ G(T )}.

For T and S ∈ LR(H), the linear relations T +S and TS are defined respectively by

G(T + S) := {(x, y + z) ∈ H ×H : (x, y) ∈ G(T ) and (x, z) ∈ G(S)}

and

G(TS) := {(x, y) ∈ H ×H : ∃ z ∈ H such that (x, z) ∈ G(S) and (z, y) ∈ G(T )}.

For T ∈ LR(H), the image of a subset M of H by T and the inverse image of

a subset N of H by T−1 are defined respectively by

T (M) :=
⋃

x∈D(T )∩M

Tx and T−1(N) := {x ∈ D(T ) : Tx ∩ Y 6= ∅}.

The subspace ker(T ) := T−1(0) is called the kernel of T and R(T ) := T (D(T )) is

the range of T .

Lemma 2.1 ([2], Lemma 2.5). Let A, B and C ∈ LR(H). Then:

(i) (A+B)C ⊂ AC +BC. If C(0) ⊂ ker(A) ∪ ker(B), then

(A+B)C = AC +BC.

(ii) If A is everywhere defined, then A(B + C) = AB +AC.
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For a positive integer n, Tn is defined as follows: T 0 = I (the identity operator

in H), T 1 = T and if Tn−1 is defined, then

Tnx := TTn−1x =
⋃

y∈D(T )∩Tn−1x

Ty,

where D(Tn) := {x ∈ D(Tn−1) : D(T ) ∩ Tn−1x 6= ∅}.

For y ∈ D(T−1) := R(T ), the inverse image of y by T is defined by

T−1y := {x ∈ D(T ) : y ∈ Tx}.

By induction, we can show that (Tn)−1 = (T−1)n for all n ∈ N.

We say that T ∈ LR(H) is continuous if for each neighbourhood V in R(T ),

T−1(V ) is a neighbourhood in D(T ). If D(T ) = H and T is continuous, then in this

case, T is said to be bounded. T is closed if its graph G(T ) is closed. The set of all

closed and bounded linear relations will be denoted by BCR(H). Notice that if T

is closed, then T (0) is closed. We say that T ∈ BCR(H) satisfies the stabilization

property [8] if T (0) = T 2(0).

The adjoint T ∗ of T ∈ LR(H) is defined by

G(T ∗) := {(y, y′) ∈ H ×H : 〈x′, y〉 = 〈y′, x〉 ∀ (x, x′) ∈ G(T )}

and we have (see [11], [19])

ker(T ∗) = R(T )⊥ and T ∗(0) = D(T )⊥.

If D(T ) = H, then T ∗ is a single valued operator.

A linear operator S is called a selection of T if D(S) = D(T ) and

Tx = Sx+ T (0) ∀x ∈ D(T ).

Moreover, if S is continuous, then T is continuous.

Linear relations are studied by numerous mathematicians, see for instance [2], [3],

[4], [8], [9], [11], [16], [17], [19] and the reference therein. In the sequel, all linear

relations are nonzero and satisfy
⋃

n>1

Tn(0) 6= H.
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3. Disk-cyclic linear relations

In the same direction as in [1], [10], we introduce the notion of disk-cyclicity for

linear relations.

Definition 3.1. Let T ∈ BCR(H). We say that T is a disk-cyclic linear relation

if there exist a nonzero vector x ∈ H such that

DOrb(T, x) :=
⋃

n>0

⋃

α∈D

αTnx

is dense in H. In this case, the vector x is called a disk-cyclic vector of T and

DOrb(T, x) is the disk-orbit of T at x.

The set of all disk-cyclic linear relations on a separable Hilbert space H and the

set of all disk-cyclic vectors for T are respectively denoted by DCR(H) and DCR(T ),

with DCR(T ) = ∅ if T /∈ DCR(H).

Following [1], a relation T ∈ BCR(H) is hypercyclic if there exists a sequence

{xm,m ∈ N} provided that:

(i) {xm,m ∈ N} is dense in H,

(ii) for each m,
⋃

n∈N

Tnxm is dense in H.

R e m a r k 3.1. Let T ∈ BCR(H) be a bounded linear relation such that

Tn(0) 6= H for each n > 1 and assume that T satisfies the stabilization prop-

erty. If T is a hypercyclic linear relation, then T is a disk-cyclic linear relation.

Indeed, suppose that T is a hypercyclic linear relation, then by [1], Corollary 2.1

there exists a vector x in H such that
⋃

n∈N

Tnx is dense in H. We then have

H =
⋃

n∈N

Tnx ⊂
⋃

α∈D

⋃

n>0

αTnx = DOrb(T, x) ⊂ H.

Therefore, T is a disk-cyclic linear relation.

In general, T being a disk-cyclic linear relation does not imply that T is a hyper-

cyclic linear relation, see for instance [7], Example 2.20.

In the following example, we show that every linear relation which has a disk-cyclic

selection is a disk-cyclic linear relation.

E x am p l e 3.1. Let A ∈ B(X) be a selection of a linear relation T ∈ BCR(H).

If A is disk-cyclic, then T is a disk-cyclic linear relation. Indeed, if A is a selection of
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a linear relation T ∈ BCR(H), then Tx = Ax+ T (0) for all x ∈ H. By Lemma 2.1,

we have

T 2x = T (Tx) = T (Ax+ T (0)) = TAx+ T 2(0) = A2x+ TA(0) + T 2(0)

= A2x+ T (0) + T 2(0) = A2x+ T 2(0).

By induction, we can prove that

Tnx = Anx+ Tn(0) ∀n ∈ N ∪ {0}.

Since A is a disk-cyclic linear operator, then

H = {αAnx : n > 0, α ∈ D} ⊂ DOrb(T, x) ⊂ H.

Consequently, we obtain T is a disk-cyclic linear relation.

In the following example, we show that every noninjective disk-cyclic linear oper-

ator is a selection of a disk-cyclic linear relation.

E x am p l e 3.2. Let S ∈ B(H) be a disk-cyclic linear operator such that

ker(S) 6= {0}, we consider the bounded linear relation defined by

T : H → 2H \ ∅,

x 7→ S−1S2(x).

Then S is a selection of T . Indeed, we have

Tx = S−1S2(x) = S−1S(Sx) = Sx+ ker(S) = Sx+ T (0)

for all x ∈ D(T ) = H, which means that S is a selection of T . Since S is disk-

cyclic linear operator, then by Example 3.1, we deduce that T is a disk-cyclic linear

relation.

E x am p l e 3.3. Let S be the bounded linear operator acting on l2(N) as follows:

S : l2(N) → l2(N),

x = (x1, x2, . . .) 7→ 2(x2, x3, . . .).

Then S is a disk-cyclic linear operator by Example 3.3 in [7]. Let T be the bounded

linear relation defined by

T : l2(N) → 2l2(N) \ ∅,

x 7→ Sx+ S−1(0).

Then T is a disk-cyclic linear relation since S is a selection of T .
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Proposition 3.1. Let T ∈ BCR(H), S ∈ BCR(K) and G ∈ B(H,K) such that

SG = GT and R(G) is dense in K. Then

G(DCR(T )) ⊂ DCR(S).

In particular, if T is disk-cyclic, then S is disk-cyclic.

P r o o f. If T is not disk-cyclic, then DCR(T ) = ∅ and hence, G(DCR(T )) = ∅ ⊂

DCR(S). Now suppose T is disk-cyclic. Let x ∈ DCR(T ), then DOrb(T, x) is dense

in H. We thus get

DOrb(S,Gx) =
⋃

α∈D

⋃

n>0

αSnGx =
⋃

α∈D

⋃

n>0

αGTnx

=
⋃

α∈D

⋃

n>0

αG(Tnx) =
⋃

α∈D

⋃

n>0

G(αTnx)

= G
(

⋃

α∈D

⋃

n>0

αTnx
)

⊇ G
(

⋃

α∈D

⋃

n>0

αTnx
)

= G(H) = R(G).

Since R(G) is dense in K, then DOrb(S,Gx) is also dense in K. Therefore Gx is an

element of DCR(S). �

Corollary 3.1. Let T ∈ BCR(H) and G ∈ B(X). If TG = GT and R(G) is dense

in H, then:

(i) Gx ∈ DCR(T ) for every x ∈ DCR(T ),

(ii) λDCR(T ) = DCR(T ) for all λ ∈ C \ {0}.

Lemma 3.1 ([1], Lemma 2.1). Let A and B be two subsets of a Banach space X

with int(A) = ∅. Then

int(B) = int(A ∪B).

Proposition 3.2. Let T ∈ BCR(H). If T is disk-cyclic, then the range of T is

dense in H.

P r o o f. Suppose that T is a disk-cyclic linear relation. Then there exists

a nonzero vector x ∈ H such that DOrb(T, x) is dense in H. We set

Dx := {αx : α ∈ D} and A =
⋃

n>1

⋃

α∈D

αTnx.
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Let y ∈ DOrb(T, x) \ Dx, then there exist n > 1 and α ∈ D such that y ∈ αTnx. If

α = 0, then y = 0, which is a contradiction with 0 ∈ Dx. So, assume that α 6= 0,

then

y ∈ αTnx = Tn(αx) ⊂ R(Tn) ⊂ R(T ).

Therefore

(3.1) DOrb(T, x) \ Dx ⊂ R(T ).

Since span{x} = span{x} 6= H, then int(span{x}) = ∅. Furthermore, as Dx is

a subset of span{x}, we obtain int(Dx) = ∅. Using Lemma 3.1, we get

int(Dx ∪A) = int(A).

On the other hand, we have

H = int(H) = int(DOrb(T, x)) = int(A ∪ Dx) = int(A ∪ Dx) = int(A) ⊂ A ⊂ H,

which implies that A is dense in H.

Now, we show that Dx ⊂ R(T ). Let α ∈ D \ {0}}, then

αx ∈ H = DOrb(T, x) \ Dx.

Hence, there exists a sequence {yi} in DOrb(T, x) \ {αx : α ∈ D} such that {yi}

converges to αx, as i→ ∞. So, for all i > 1 there exist ni > 1 and αi ∈ D \ {0} such

that

yi ∈ αiT
nix ⊂ R(T ) and yi → αx.

Then

(3.2) Dx ⊂ R(T ).

Combining (3.1) and (3.2), we conclude that

DOrb(T, x) ⊂ R(T ) ⊂ H.

As DOrb(T, x) is dense in H, then the range of T is dense in H. �

R em a r k 3.2. In general, the converse of Proposition 3.2 is not true. Indeed,

let A ∈ B(l2(N)) be the bounded operator defined by

A(x1, x2, . . .) =
1

2
(x2, x3, . . .).

Then the range of A is dense in l2(N) and by Example 2.22 in [12], A is not hyper-

cyclic. Furthermore, according to [7], Corollary 3.6, A is not disk-cyclic.
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The following result is [11], Exercise II.3.21, but for the convenience of the reader

we give here a proof.

Lemma 3.2. Let T ∈ BCR(H) and let M be a nonempty subset of H. Then

T (M) ⊂ T (M).

P r o o f. Since T is continuous and closed, then according to [11], Corollary II 4.6,

T has a continuous selection A and T (0) is closed. As A is continuous, then

A(M) ⊂ A(M). Therefore,

T (M) = A(M) + T (0) ⊂ A(M) + T (0) ⊂ A(M) + T (0) = T (M).

�

Proposition 3.3. Let T ∈ DCR(H) and S ∈ BCR(H) be such that TS = ST ,

T (0) = TS(0) and the range of S is dense in H. Then

Sx ⊂ DCR(T )

for all x ∈ DCR(T ).

P r o o f. Let x be a disk-cyclic vector for T . Then the set DOrb(T, x) is dense

in H. Now, let y ∈ Sx. Then

TSx = T (y + S(0)) = Ty + TS(0) = Ty + T (0) = Ty.

Since TS = ST , then

STnx = TnSx = Tny

for all n > 1. Since x ∈ DCR(T ), then DOrb(T, x) \ Dx is also dense in H (see the

proof of Proposition 3.2). By Lemma 3.2, we have

R(S) = S(H) = S(DOrb(T, x) \ Dx) ⊂ S(DOrb(T, x) \ Dx)

= S
(

⋃

α∈D

⋃

n>1

αTnx
)

=
⋃

α∈D

⋃

n>1

S(αTnx) =
⋃

α∈D

⋃

n>1

αSTnx

=
⋃

α∈D

⋃

n>1

αTnSx =
⋃

α∈D

⋃

n>1

αTny ⊂ DOrb(T, y) ⊂ H.

Since the range of S is dense inH, we get that DOrb(T, y) is dense inH. Therefore, y

is a disk-cyclic vector for T and so Sx is a subset of DCR(T ). �
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Theorem 3.1. Let T ∈ BCR(H) satisfy the criterion of stabilization. Then T

is a disk-cyclic linear relation if and only if T p is a disk-cyclic linear relation for all

p ∈ N.

P r o o f. Suppose that T is a disk-cyclic linear relation. Then by Proposition 3.2,

the range of T is dense in H. Since T (0) = T 2(0), then by virtue of Proposition 3.3,

(3.3) T (DCR(T )) ⊂ DCR(T ).

Hence, by induction we have

Tn(DCR(T )) ⊂ DCR(T ) ∀n > 1.

Now, we show that T 2 is a disk-cyclic linear relation. By assumption there exists

x ∈ H such that DOrb(T, x) is dense in H. Let y ∈ Tnx ⊂ DCR(T ). Using the fact

that T (0) = T 2(0) and Lemma 2.1, we get

T 2nx = TnTnx = Tn(y + Tn(0)) = Tny + T 2n(0) = Tny + Tn(0) = Tny

for all n > 1. Consequently,

DOrb(T 2, x) \ Dx = DOrb(T, y) \ Dy.

Since y is a disk-cyclic vector for T , it follows from the proof of Proposition 3.2 that

DOrb(T, y) \ Dy is also dense in H. Therefore DOrb(T 2, x) is dense in H, which

implies that T 2 is a disk-cyclic linear relation. By induction, we show that for all

p > 1, T p is a disk-cyclic linear relation. �

Let T ∈ LR(H) and M be a subspace of H. Then the restriction of T to M

denoted by TM is the linear relation defined by

G(TM ) := G(T ) ∩ (M ×H).

Lemma 3.3. Let T ∈ LR(H) and M be a nontrivial closed subspace of H such

that T (M) ⊂M and T (M⊥) ⊂M⊥. If P is the orthogonal projection onto M⊥,

(TP )n = TnP = PTn

for all n > 1.
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P r o o f. Since H is a Hilbert space and M is a closed subspace of H, then H =

M ⊕M⊥. Let x ∈ H, then there exist a ∈ M and b ∈ M⊥ such that x = a + b.

Since T (M) ⊂M and T (M⊥) ⊂M⊥,

PTx = P (Ta+ Tb) = PTb = Tb = TPx.

Hence TP = PT . By induction, we obtain (TP )n = TnP = PTn, for all n > 1. �

Proposition 3.4. Let T ∈ DCR(H). Let M be a nontrivial closed subspace of H

such that T (M) ⊂M and let P be the orthogonal projection onto M⊥. Then

Px 6= 0

for all x ∈ DCR(T ).

P r o o f. Let x ∈ DCR(T ) ⊂ H. For the sake of contradiction assume that Px = 0.

So, x ∈ M . As T (M) ⊂ M , then αTnx ⊂ αTnM ⊂ αM = M for all α ∈ D \ {0}

and all n > 0. This implies that

H =
⋃

α∈D

⋃

n>0

αTnx ⊂M =M,

which is a contradiction. Therefore Px 6= 0. �

Proposition 3.5. Let T ∈ DCR(H) and M be a nontrivial subspace of H such

that T (M) ⊂ M and T (M⊥) ⊂ M⊥. Then TM and TM⊥ are disk-cyclic linear

relations.

P r o o f. Let P be the bounded projection onto M⊥. Since T is a disk-cyclic

linear relation, there exists x ∈ H such that the set DOrb(T, x) is dense in H. It

follows from the proof of Proposition 3.2 that DOrb(T, x) \ Dx is also dense in H.

As H = M ⊕M⊥, there exist x1 ∈ M and x2 ∈ M⊥ such that x = x1 + x2. Hence

Px = x2. By Lemma 3.3, we have (TP )
n = TnP = PTn for all n > 1. Therefore

we obtain

M⊥ = P (H) = P (DOrb(T, x) \ Dx) ⊂ P (DOrb(T, x) \ Dx) = P
(

⋃

α∈D

⋃

n>1

αTnx
)

=
⋃

α∈D

⋃

n>1

αPTnx =
⋃

α∈D

⋃

n>1

αTnPx =
⋃

α∈D

⋃

n>1

α(TP )nx2

=
⋃

α∈D

⋃

n>1

αTn
M⊥x2 ⊂ DOrb(TM⊥ , x2) ⊂M⊥ =M⊥.

Finally, we conclude that TM⊥ is a disk-cyclic linear relation. With the same argu-

ment we show that TM is also a disk-cyclic linear relation. �
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Let {Hi}
n
i=1 be a family of separable Hilbert spaces and Ti ∈ BCR(Hi) for all

i ∈ {1, . . . , n}. We define (see [10])

n
⊕

i=1

Hi := {(x1, . . . , xn) : xi ∈ Hi, 1 6 i 6 n}

and

n
⊕

i=1

Tix := {(y1, . . . , yn) : yi ∈ Tixi, 1 6 i 6 n}, where x = (x1, . . . , xn).

Let k ∈ N, then
( n
⊕

i=1

Ti

)k

x =

n
⊕

i=1

T k
i x.

Proposition 3.6. Let Ti ∈ BCR(Hi) for all i ∈ {1, . . . ,m}. If
m
⊕

i=1

Ti is a disk-

cyclic linear relation, then Ti is a disk-cyclic linear relation for each i ∈ {1, . . . ,m}.

P r o o f. Let y = (y1, . . . , ym) ∈
m
⊕

i=1

Hi. Since
m
⊕

i=1

Ti is a disk-cyclic linear relation,

then there exists x = (x1, . . . , xm) ∈ D CR
( m
⊕

i=1

Ti

)

such that DOrb
( m
⊕

i=1

Ti, x
)

is

dense in
m
⊕

i=1

Hi. Therefore there exists {yk} in DOrb
( m
⊕

i=1

Ti, x
)

such that {yk}

converges to y as k → ∞. Then for all k ∈ N there exists {αk} in D and {nk} in N

such that

yk → y with yk ∈ αk

( m
⊕

i=1

Ti

)nk

x.

Let Pi be the bounded projection defined on
m
⊕

i=1

Hi such that R(Pi) = Hi. Then

Pi(yk) ∈ αkT
nk

i xi and Pi(yk) → yi.

Therefore xi ∈ D CR(Ti) for each i ∈ {1, . . . ,m}. �
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4. Disk transitive linear relation

Here we define and study the concept of disk transitive linear relation.

Definition 4.1. Let T ∈ BCR(H). We say that T is disk transitive if for any

pair (U, V ) of nonempty open subsets of H there exist α ∈ D \ {0} and n > 0 such

that αTn(U) ∩ V 6= 0.

Let S ∈ B(H) be a disk transitive linear operator. Let U and V be two open

nonempty sets of H, then there exist n > 0 and α ∈ D \ {0} such that

αSn(U) ∩ V 6= ∅.

Let y ∈ αSn(U) ∩ V . Hence, there exists x ∈ U such that y = αSnx.

If S is a selection of a linear relation T ∈ BCR(H), then by virtue of Example 3.1,

we have Tnx = Snx+ Tn(0) and hence, y = αSnx ∈ αTnx ⊂ αTnU. Consequently,

αTn(U) ∩ V 6= ∅ and therefore T is a disk transitive linear relation.

Proposition 4.1. Let T ∈ BCR(H), S ∈ BCR(K) and A ∈ B(H,K) be such

that SA = AT and the range of A is dense in K. If T is a disk transitive linear

relation, then S is a disk transitive linear relation.

P r o o f. Let U and V be two nonempty open subsets of K. Since A is bounded

and with dense range, then A−1(U) and A−1(V ) are two nonempty open subsets

of H. As T is a disk transitive linear relation, there exist n > 0 and α ∈ D\{0} such

that

αTnA−1(U) ∩A−1(V ) 6= ∅.

Let y ∈ A−1(V ) and x ∈ A−1(U) such that y ∈ αTnx. Since SA = AT , we obtain

αSnAx = αATnx = A(αTnx) = A(y + αTn(0)) = Ay + αATn(0) = Ay + αSnA(0).

So, Ay ∈ αSnAx ⊂ αSn(U) and Ay ∈ V . Thus,

αSn(U) ∩ V 6= ∅.

Finally, S is a disk transitive linear relation. �

The following theorem gives a characterization of a disk transitive linear relation.

Theorem 4.1. Let T ∈ BCR(H). Then the following assertions are equivalent:

(i) T is disk transitive.
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(ii) For each pair (U, V ) of nonempty open subsets of H there exist |α| > 1 and

n > 0 such that

αT−n(U) ∩ V 6= ∅.

(iii) For any nonempty open subset U of H,

⋃

α∈D\{0}

⋃

n>0

αTn(U)

is dense in H.

(iv) For any nonempty open subset V of H,

⋃

α∈C,|α|>1

⋃

n>0

αT−n(V )

is dense in H.

P r o o f. (i) =⇒ (ii). Let (U, V ) be a pair of nonempty open subsets of H. Since T

is disk transitive, then there exist α ∈ D \ {0} and n > 0 such that αTn(U)∩ V 6= ∅.

Hence

(αU + T−n(0)) ∩ T−n(V ) 6= ∅.

Let x ∈ (αU + T−n(0)) ∩ T−n(V ). Then there exist u ∈ U , y ∈ T−n(0) and v ∈ V

such that x = αu+ y and x ∈ T−n(v). Hence

T−n(v) = x+ T−n(0) = αu+ y + T−n(0) = αu+ T−n(0)

which means that αu ∈ T−n(v). We thus get u ∈ βT−n(V )∩U with |β| = 1/|α| > 1.

Therefore βT−n(V ) ∩ U 6= ∅.

(ii) =⇒ (i). It is similar to (i) =⇒ (ii).

(i) ⇐⇒ (iii). Assume that T is a disk transitive linear relation. Let U be

a nonempty open subset of H and let (Oi)i>1 be a countable basis of open sets of H.

For each i > 1 we can find ni > 0 and αi ∈ D \ {0} such that αiT
ni(U) ∩ Oi 6= ∅.

We then obtain that
⋃

α∈D\{0}

⋃

n>0

αTn(U)

is dense in H.

Conversely, let U and V be two open nonempty subsets of H. Since the set

⋃

α∈D\{0}

⋃

n>0

αTn(U)
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is dense in H, then there exist α ∈ D \ {0} and n > 0 such that

αTn(U) ∩ V 6= 0,

which means that T is a disk transitive linear relation.

(ii) ⇐⇒ (iv). It is similar to (i) ⇐⇒ (iii). �

In the sequel, we denote by B(x, r) the open ball centered at x ∈ H and with

radius r > 0.

Theorem 4.2. Let T ∈ BCR(H). Then the following assertions are equivalent:

(1) T is a disk transitive linear relation.

(2) For each (x, y) ∈ H2 there exist sequences of positive integers {nk}, {xk} in H,

{αk} in D \ {0} and {yk} in H such that

xk → x, yk → y and αkT
nkxk = yk + Tnk(0).

(3) For each (x, y) ∈ H2 and for each neighbourhood W of 0 there exist z, t ∈ H,

α ∈ D \ {0} and n ∈ N such that

x− z ∈W, t− y ∈W and αTnz = t+ Tn(0).

P r o o f. (1) =⇒ (2): Suppose that T is disk transitive. Let x, y ∈ H and let

Bk := B(x, 1/k) and B′
k := B(y, 1/k) for all k > 1. Then Bk and B

′
k are nonempty

open subsets of H. As T is a disk transitive linear relation, then there exist two

sequences {αk} ⊂ D\{0} and {nk} in N such that T
nk(αkBk)∩B

′
k 6= ∅ for all k > 1.

Hence, there exists a sequence {yk} in H such that

yk ∈ Tnk(αkBk) ∩B
′
k

for all k > 1. Consequently, for each k > 1 there exists xk ∈ Bk such that

yk ∈ Tnk(αkxk) ∩B
′
k.

Therefore we have

αkT
nkxk = yk + αkT

nk(0) = yk + Tnk(0).

Moreover,

xk → x and yk → y.
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(2) =⇒ (3): Assume that for each (x, y) ∈ H2 there exist sequences {nk} in N,

{xk} in H, {αk} in D \ {0} and {yk} in H provided that

xk − x→ 0, yk − y → 0 and αkT
nkxk = yk + Tnk(0).

Let W be a neighbourhood of zero. Then there exists some k0 > 1 such that

x− xk0
∈W and yk0

− y ∈W . Set z := xk0
and t := yk0

. We thus have

x− z ∈W, t− y ∈W and αk0
Tnk0 z = t+ Tnk0 (0).

(3) =⇒ (1): Let U and V be two nonempty open subsets of H. Let (x, y) ∈ U×V .

For each k > 1, Wk := B(0, 1/k) is a neighbourhood of zero. By assumption there

exist sequences {xk} in H, {αk} in D \ {0}, {nk} in N and {yk} ⊂ H such that

‖xk − x‖ <
1

k
, ‖yk − y‖ <

1

k
and yk ∈ αkT

nkxk.

Then {xk} converges to x and {yk} converges to y as k → ∞. Therefore for k large

enough we have xk ∈ U and yk ∈ V . Thus

∅ 6= αkT
nkxk ∩ V ⊂ αkT

nkU ∩ V

and we conclude that T is a disk transitive linear relation. �

Lemma 4.1. Let T ∈ BCR(H). If x ∈ D CR(T ), then for any nonempty open

set U of H there exist n > 0 and γ ∈ D \ {0} such that

γTnx ∩ U 6= ∅.

P r o o f. Since x is a disk-cyclic vector for T , then the set

DOrb(T, x) =
⋃

n>0

⋃

α∈D

αTnx

is dense in H. Let U be a nonempty open subset of H. Then

(

⋃

n>0

⋃

α∈D

αTnx
)

∩ U 6= ∅.

Now, we distinguish two cases:

(i) If 0 /∈ U , then there exist n > 0 and α ∈ D \ {0} such that

αTnx ∩ U 6= ∅.
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(ii) If 0 ∈ U , then we can find an open set V of H such that

0 /∈ V and V ⊂ U.

Using the above argument, we deduce that there exist m > 0 and β ∈ D \ {0} such

that

βTmx ∩ V 6= ∅

and so

βTmx ∩ U 6= ∅.

Finally, in both cases there exist n > 0 and γ ∈ D \ {0} such that γTnx∩U 6= ∅. �

Proposition 4.2. Let T ∈ BCR(H). Then T is a disk transitive linear relation

if and only if

D CR(T ) =
⋂

k∈N

⋃

n>0

⋃

α∈C,|α|>1

αT−n(Vk)

is a dense Gδ-set in H, where (Vk)k∈N is a countable basis of open subsets of H.

P r o o f. Let T be disk-cyclic. Let (Vk)k∈N be a countable basis of open subsets

of H. From Lemma 4.1 we have

x ∈ D CR(T ) ⇐⇒ ∀ k > 1, Vk ∩
(

⋃

n>0

⋃

α∈D

αTnx
)

6= ∅

⇐⇒ ∀ k > 1, ∃β ∈ D \ {0}, ∃n > 0 such that Vk ∩ βTnx 6= ∅

⇐⇒ ∀ k > 1, ∃β ∈ D \ {0}, ∃n > 0 such that βx ∈ T−n(Vk)

⇐⇒ ∀ k > 1, ∃α ∈ C, |α| > 1, ∃n > 0 such that x ∈ αT−n(Vk)

⇐⇒ x ∈
⋂

k∈N

⋃

n>0

⋃

α∈C,|α|>1

αT−n(Vk).

Now, we show that D CR(T ) is dense in H. For each k > 1 we set

Ok :=
⋃

n>0

⋃

α∈C,|α|>1

αT−n(Vk).

Since T is disk transitive, then by Theorem 4.1, Ok is dense in H. As Ok is an

open set of H (see [1], Remark 2.2), by the Baire category theorem, we obtain
⋂

k∈N

Ok = D CR(T ) is dense Gδ-set in H.

Conversely, let U and V be two nonempty open subsets of H. Since (Vk)k∈N is

a countable basis of open subsets of H and
⋂

k∈N

Ok = D CR(T ) is dense in H, then
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for U =
⋃

k∈I

Vk with I ⊂ N, we have
⋂

k∈N

Ok∩U 6= ∅. Hence, Ok∩U 6= ∅ for all k ∈ N.

For k ∈ I we have

∅ 6= Ok ∩ V =
(

⋃

n>0

⋃

α∈C,|α|>1

αT−n(Vk)
)

∩ V

⊂
(

⋃

n>0

⋃

α∈C,|α|>1

αT−n
(

⋃

i∈I

Vi

))

∩ V

=
(

⋃

n>0

⋃

α∈C,|α|>1

αT−n(U)
)

∩ V.

Thus,
(
⋃

n>0

⋃

α∈C,|α|>1

αT−n(U)
)

∩V 6= ∅ for all nonempty open subset V of H, which

means that
⋃

n>0

⋃

α∈C,|α|>1

αT−n(U) is dense in H. Finally, by virtue of Theorem 4.1,

we conclude that T is a disk transitive linear relation. �

Theorem 4.3. Let T ∈ BCR(H). Then the following assertions are equivalent:

(i) T is a disk transitive linear relation.

(ii) T is a disk-cyclic linear relation.

P r o o f. Suppose that T is disk transitive, then by Proposition 4.2, D CR(T ) is

dense in H. Hence, DCR(T ) is a nonempty set of H and so T is a disk-cyclic linear

relation.

Conversely, assume that T is a disk-cyclic linear relation, then there exists a vec-

tor x in H such that the set DOrb(T, x) is dense in H. Let (U, V ) be a pair of

nonempty open sets of H. Then

DOrb(T, x) ∩ U 6= ∅ and DOrb(T, x) ∩ V 6= ∅.

According to Lemma 4.1, there exist m,n > 0 and α, β ∈ D \ {0} such that

U ∩ αTnx 6= ∅ and V ∩ βTmx 6= ∅.

We choose n > m. Since U∩αTnx 6= ∅ and V ∩βTmx 6= ∅, there exist two elements z1
and z2 such that z1 ∈ U ∩ αTnx and z2 ∈ V ∩ βTmx. So, we distinguish two cases:

Case 1: |α| 6 |β|. Since z2 ∈ βTmx and β 6= 0,

z2 ∈ βTmx⇐⇒ z2 ∈ Tm(βx) ⇐⇒ (βx, z2) ∈ G(Tm) ⇐⇒ (z2, βx) ∈ G((Tm)−1)

⇐⇒ (z2, βx) ∈ G((T−m)) ⇐⇒ βx ∈ T−mz2 ⇐⇒ x ∈
1

β
T−mz2.
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Thus,

z1 ∈ αTnx ⊂
α

β
Tn−mz2 ⊂

α

β
Tn−m(V ).

We set p := n−m > 0 and γ := α/β. Therefore

γT p(V ) ∩ U 6= ∅ with p > 0 and γ ∈ D \ {0}.

Therefore T is a disk transitive linear relation.

Case 2: |β| 6 |α|. As (z1, z2) ∈ Tnx× V , then

z1 ∈ αTnx⇐⇒ x ∈
1

α
T−nz1,

which implies

z2 ∈ βTmx ⊂
β

α
Tm−nz1 ⊂

β

α
Tm−n(U) ⊂ γT−p(U)

with p := n−m and γ := β/α. Since n > m and |β| 6 |α|,

γT−p(U) ∩ V 6= ∅ with p ∈ N ∪ {0} and γ ∈ D \ {0}.

Hence,

∅ 6= γT−p(U) ∩ V ⊂ γ
(

⋃

α∈C,|α|>1

⋃

n>0

αT−n(U)
)

∩ V

and so

γ
(

⋃

α∈C,|α|>1

⋃

n>0

αT−n(U)
)

∩ V 6= ∅

for any nonempty open subset V of H. Thus, we deduce that the set

G := γ
(

⋃

α∈C,|α|>1

⋃

n>0

αT−n(U)
)

is dense in H.

Now, we consider the map hγ defined on H by hγ(x) = γ−1x. Clearly, hγ is

a homeomorphism. Since hγ is closed,

⋃

α∈C,|α|>1

⋃

n>0

αT−n(U) =
1

γ
G = hγ(G) = hγ(G) = hγ(H) =

1

γ
H = H.

It follows from Theorem 4.1 that T is a disk transitive linear relation. �
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Theorem 4.4. Let T ∈ D CR(H) and λ ∈ D. Then the range of T − λI is dense

in H.

P r o o f. If λ = 0, then by Proposition 3.2, R(T ) is dense in H. Now, let λ ∈

D \ {0}. Suppose that R(T − λI) is not dense in H. Since T is disk-cyclic, then

by virtue of Proposition 4.2 and Theorem 4.3 there exists x ∈ D CR(T ) such that

x 6∈ (T − λI)H. By the Hahn Banach theorem, there exists a continuous linear

functional ψ on H such that ψ(x) 6= 0 and ψ(R(T − λI)) = {0}. This implies that

ψ(Ty)− λψ(y) = ψ((T − λI)y) = 0

for all y ∈ H. Hence, ψ(Ty) = λψ(y). Using [9], Lemma 4.2, we get for all n > 1,

R(Tn − λnI) ⊂ R(T − λI). Thus

(4.1) ψ(Tny) = λnψ(y)

for all n > 1 and all y ∈ H.

Now since DOrb(T, x) is dense in H, there exists {xk} in DOrb(T, x) such that

{xk} converges to 3x. Then ψ(xk) → 3ψ(x) as k → ∞. For each k > 1 there exists

nk > 1 and αk in D such that xk ∈ αkT
nkx. Using equality (4.1) and Tnkαkx =

xk + Tnk(0), we obtain

ψ(xk) = ψ(αkT
nkx) = αkψ(T

nkx) = αkλ
nkψ(x).

Thus, αkλ
nkψ(x) → 3ψ(x). Since |αkλ

nk | 6 1 and ψ(x) 6= 0, |αkλ
nk | → 3 6 1 as

k → ∞, which is a contradiction. Finally, we conclude that the range of T − λI is

dense in H. �

As an immediate consequence of the previous results, we obtain the following

corollary.

Corollary 4.1. Let T ∈ D CR(H). Then

σp(T
∗) ⊂ C \ D.

P r o o f. Suppose that σp(T
∗) is a nonempty subset of C. Let λ ∈ D, then, by

Theorem 4.4, we deduce that R(T − λI) is dense in H. This implies that

ker(T − λI)⋆ = R(T − λI)⊥ = R(T − λI)
⊥
= H⊥ = {0}.

Moreover, since λI is a bounded linear operator,

ker(T − λI)∗ = ker(T ∗ − λI) = {0},

which implies that λ /∈ σp(T
∗). Since λ ∈ D is equivalent to λ ∈ D, we obtain

λ /∈ σp(T
∗). Thus, σp(T

∗) is a subset of C \ D. �
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