STRONG ENDOMORPHISM KERNEL PROPERTY FOR FINITE BROUWERIAN SEMILATTICES
 AND RELATIVE STONE ALGEBRAS

Jaroslav Guričan, Bratislava, Heghine Ghumashyan, Yerevan
Received March 31, 2022. Published online January 4, 2023.
Communicated by Radomír Halaš

Abstract

We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.

Keywords: (strong) endomorphism kernel property; congruence relation; Brouwerian semilattice; Brouwerian algebra; dual generalized Boolean algebra; direct sum; factorable congruences

MSC 2020: 03G25, 06E99, 08A30, 08A35, 08B26

1. Introduction

The notions of endomorphism kernel property was introduced and first studied by Blyth, Fang and Silva in [1]. A slight improvement of one of proofs of [1] was given in [11]. Blyth and Silva in paper [3] defined a strong endomorphism kernel property (SEKP) for a universal algebra (see Definition 2.2). They considered the case of Ockham algebras and in particular of MS-algebras. They proved e.g. that a finite Boolean algebra has SEKP if and only if it is 2 element BA, a finite bounded distributive lattice possesses SEKP if and only if it is a chain and they proved full characterization of MS-algebras having SEKP. Blyth, Fang and Wang proved a full characterization of finite distributive double p-algebras and finite double Stone algebras having SEKP in [2]. SEKP for distributive p-algebras and Stone algebras has been studied and fully characterized by Fang and Fang, see [5]. Fang and Sun fully characterized semilattices with SEKP in [7]. Guričan and Ploščica fully char-
acterized unbounded distributive lattices which possess SEKP in [13]. The main approach in papers [3], [2] and [5] was done by regarding algebras in question as Ockham algebras and using the duality theory of Priestley. Priestley duality is also used in [13]. Guričan used another approach to prove e.g. that all finite relative Stone algebras have SEKP in [12]. Halušková described monounary algebras with SEKP in [14] and some monounary algebras with a weaker property called endomorphism kernel property (EKP) in [15]. Double MS-algebras with SEKP were described by Fang in [6]. Finite abelian groups with SEKP were described by Fang and Sun in [8], Ghumashyan and Guričan proved that all finite Abelian groups have EKP in [9].

There is one important universal assumption in the original paper [3] of Blyth and Silva, namely, all algebras considered in this paper must contain two nullary operations (denoted by 0 and $1,0 \neq 1$). This assumption is necessary to prove all important statements in their paper and therefore it seems to be impossible to directly adapt their methods to algebras which do not satisfy this assumption (e.g. lattices with the top element or unbounded lattices). Let us mention three of these results:

Theorem 1.1 ([3], Theorem 1). If an algebra A has SEKP, then it has at most one maximal congruence.

Corollary 1.2 ([3], Corollary 1). A finite algebra that has SEKP is directly indecomposable.

Theorem 1.3 ([3], Theorem 3). A semisimple algebra has SEKP if and only if it is simple.

As it is easy to check, $\{0,1\}^{2}$ considered as 4 element distributive lattice with a top element ($\{1\}$-lattice) has SEKP and none of these statements is true for this algebra. Also, these statements are not true e.g. for Brouwerian semilattices and for Brouwerian algebras.

In this paper we show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP) (see Theorem 3.10), give a new proof that all finite relative Stone algebras have SEKP (see Corollary 3.11), describe an infinite family of infinite Brouwerian semilattices and relative Stone algebras which enjoy SEKP and also fully characterize dual generalized Boolean algebras (one of subvarieties of the variety of relative Stone algebras) which possess SEKP (see Theorem 4.5).

2. Preliminaries

Let A be a universal algebra. We denote $\omega_{A}=\{(a, a): a \in A\}$ and $\iota_{A}=A \times A$, trivial and universal congruences on A, respectively, $\operatorname{Con}(A)$ the set of all congruences of $A, \operatorname{End}(A)$ the set of all endomorphisms of A. For an endomorphism $f \in \operatorname{End}(A)$, $\operatorname{ker}(f)=\left\{(a, b) \in A^{2}: f(a)=f(b)\right\}$ denotes the kernel of f and $\operatorname{Im}(f)=\{f(a)$: $a \in A\}$ denotes the image of f. We denote $[a] \theta=\{b \in A:(a, b) \in \theta\}$ for $a \in A$, $\theta \in \operatorname{Con}(A)$.

Next definition defines the notion of EKP (see [1]).
Definition 2.1. An algebra A has the endomorphism kernel property (EKP for short) if every congruence relation on A different from the universal congruence ι_{A} is the kernel of an endomorphism on A. In addition, we say that $f \in \operatorname{End}(A)$ is associated to $\theta \in \operatorname{Con}(A)$ if $\theta=\operatorname{ker}(f)$.

Next important notion is strong endomorphism property defined in [3]. Let A be a universal algebra, $f: A \rightarrow A$ be an endomorphism, $\theta \in \operatorname{Con}(A)$ be a congruence on A. Endomorphism f is compatible with θ if and only if $(a, b) \in \theta \Rightarrow$ $(f(a), f(b)) \in \theta$ and is strong (on A) if it is compatible with every congruence $\theta \in \operatorname{Con}(A)$.

Definition 2.2. An algebra A has the strong endomorphism kernel property (SEKP for short) if and only if every congruence relation on A different from the universal congruence ι_{A} is the kernel of a strong endomorphism on A.

3. Finite Brouwerian semilattices and finite relative Stone algebras

We are going to show that all finite Brouwerian semilattices and all finite relative Stone algebras have SEKP.

Definition 3.1. Brouwerian semilattice is an algebra $(L, \wedge, *, 1)$ of type $(2,2,0)$ such that the reduct $(L, \wedge, 1)$ is a meet-semilattice with greatest element 1 , and $a * b$ is the relative pseudocomplement of a with respect to b; it means that $a * b$ is the greatest element of the set $\{x \in L ; a \wedge x \leqslant b\}$.

The list of most important properties which hold in a Brouwerian semilattice L is as follows (see e.g. [23], [22], we assume that $*$ binds stronger than \wedge).

For all $a, b, c \in L$:

$$
\begin{align*}
& 1 * a=a, \tag{3.1}\\
& a * a=1, \tag{3.2}\\
& a * b \geqslant b, \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& a \wedge a * b=a \wedge b, \tag{3.4}\\
& a *(b * c)=(a \wedge b) * c, \tag{3.5}\\
& a *(b * c)=(a * b) *(a * c), \tag{3.6}\\
& a *(b \wedge c)=a * b \wedge a * c, \tag{3.7}\\
& a \leqslant b \Leftrightarrow a * b=1, \tag{3.8}\\
& a \leqslant b \Rightarrow c * a \leqslant c * b, \tag{3.9}
\end{align*}
$$

Definition 3.2. Meet-semilattice L is called distributive if for $t, x, y \in L, t \geqslant$ $x \wedge y$, there are $x_{1}, y_{1} \in L$ such that $x_{1} \geqslant x, y_{1} \geqslant y$ and $t=x_{1} \wedge y_{1}$.

It is known that Brouwerian semilattices are distributive in this sense (see [18], Section 2.7). Let L be a Brouwerian semilattice, F be a filter of L. Denote θ_{F} to be the relation on L given by

$$
(x, y) \in \theta_{F} \text { if and only if } x \wedge d=y \wedge d \quad \text { for some } d \in F .
$$

Also denote $[a)=\{x \in L ; a \leqslant x\}$ for $a \in L$.
The characterization of congruences of a Brouwerian semilattice was given in [23] as:

Lemma 3.3. Let L be a Brouwerian semilattice. If θ is a congruence of L, then [1] θ is a filter of L and

$$
(x, y) \in \theta \text { if and only if } x \wedge d=y \wedge d \quad \text { for some } d \in[1] \theta
$$

and conversely, if F is a filter of L, then the relation θ_{F} is a congruence of L with $[1] \theta_{F}=F$.

Definition 3.4. Brouwerian algebra is an algebra $(L, \vee, \wedge, *, 1)$ of type $(2,2,2,0)$ such that the reduct (L, \vee, \wedge) is (necessarily distributive) lattice with greatest element 1 , and $a * b$ is a relative pseudocomplement of a with respect to b (in the reduct $(L, \wedge, *, 1)$).

Brouwerian algebra is called a relative Stone algebra if each of its (closed) intervals is a Stone algebra, or equivalently, if it satisfies the identity

$$
(x * y) \vee(y * x)=1
$$

(see [18]).
As Brouwerian algebras are distributive lattices, the characterization and relationship described in Lemma 3.3 hold also between filters and congruences in a Brouwerian algebra (the operation \vee do not change congruences in the case of Brouwerian algebras, but it changes subalgebras and endomorphisms).

We shall start with the characterization of strong endomorphisms in Brouwerian semilattices (algebras).

Theorem 3.5. Let L be either a Brouwerian semilattice or a Brouwerian algebra, $\varphi: L \rightarrow L$ be an endomorphism of the corresponding algebra. The following conditions are equivalent:
(i) φ is a strong endomorphism,
(ii) $\varphi(F) \subseteq F$ for every filter F of L,
(iii) $a \leqslant \varphi(a)$ for all $a \in L$.

Proof. (i) \Rightarrow (ii): Let F be a filter of L, θ be a congruence of L with $F=$ [1] θ, which means $\theta=\theta_{F}$. As φ is a strong endomorphism, for $f \in F$ we have $(f, 1) \in \theta$ and therefore $(\varphi(f), \varphi(1))=(\varphi(f), 1) \in \theta$. It means that $\varphi(f) \in F$, so that $\varphi(F) \subseteq F$.
(ii) \Rightarrow (i): Let θ be a congruence on $L, F=[1] \theta$. Let $(a, b) \in \theta$. Then there is $f \in F$ with $a \wedge f=b \wedge f$. As φ is an endomorphism,

$$
\varphi(a) \wedge \varphi(f)=\varphi(a \wedge f)=\varphi(b \wedge f)=\varphi(b) \wedge \varphi(f)
$$

By (ii), $\varphi(f) \in F$ and therefore $(\varphi(a), \varphi(b)) \in \theta$.
(ii) \Rightarrow (iii): Let $a \in L$. Then $[a$) is a filter in L and by (ii), $\varphi([a)) \subseteq[a)$, so that $a \leqslant \varphi(a)$.
(iii) \Rightarrow (ii): Let F be a filter of L and $f \in F$. By (iii), $f \leqslant \varphi(f)$. As F is a filter, this means that $\varphi(f) \in F$, so that $\varphi(F) \subseteq F$.

We remind a result from [21]. Even if it is not used in our proofs, it provides us a suggestion where to search for relevant strong endomorphisms for Brouwerian semilattices and Brouwerian algebras. First we utilize one new notion and new operation between filters.

Definition 3.6. Let L be a distributive meet-semilattice with 1. A filter F of L is called comonomial if every congruence class of the congruence θ_{F} has a greatest element. Let F_{1}, F_{2} be filters of L. Denote

$$
F_{1} \underline{\vee} F_{2}=\left\{t \in L ;\left(\exists x \in F_{1}\right)\left(\exists y \in F_{2}\right) t=x \wedge y\right\} .
$$

The set $F_{1} \bigvee F_{2}$ is a filter of L and using the distributivity of L it is the smallest filter containing both F_{1} and F_{2}. Both these notions are relevant for Brouwerian semilattices and Brouwerian algebras, as they have a distributive meet-semilattice as a reduct.

Theorem 3.7 ([21], 2.1). Let L be a Brouwerian semilattice or a Brouwerian algebra, F_{1}, F_{2} be filters of L such that there exists $d \in L$ with $F_{1} \cap F_{2}=[d)$ (it means that this intersection is a principal filter generated by d) and $F_{1} \vee F_{2}=L$. Then both F_{1} and F_{2} are comonomial and $d * t$ for $t \in F_{2}$ is the greatest element in the block $[t] \theta_{F_{1}}$.

Corollary 3.8. Let L be a Brouwerian semilattice or a Brouwerian algebra, F be a filter of L such that $F=[d)$ for some $d \in F$. Then F is comonomial and for every $t \in L, d * t$ is the greatest element in the block $[t] \theta_{F}$.

Proof. It is enough to take $F_{1}=F$ and $F_{2}=L$. The assumptions of Theorem 3.7 are satisfied, therefore F is comonomial and $d * t$ for $t \in F_{2}=L$ is the greatest element in the block $[t] \theta_{F_{1}}$.

As a consequence, the function $\varphi_{d}: L \rightarrow L$ which assigns $t \mapsto d * t$ is a function, which is constant on blocks of the congruence $[t] \theta_{[d)}$ (the kernel of φ_{d} is $\theta_{[d)}$) and to each element of $[t] \theta_{[d)}$ it assignes the greatest element of this block. Thus, for all $a \in L$ we have $a \leqslant \varphi_{d}(a)$.

Lemma 3.9. Let L be a Brouwerian semilattice, $d \in L$. Then φ_{d} is an endomorphism and consequently, $\operatorname{Im}\left(\varphi_{d}\right)$ is a subalgebra of L.

Proof. Let us remind that $\varphi_{d}: L \rightarrow L$ is defined by $\varphi_{d}(a)=d * a$. Let $a, b \in L$. Then

$$
\varphi_{d}(a * b)=d *(a * b)=(d * a) *(d * b)=\varphi_{d}(a) * \varphi_{d}(b)
$$

by (3.6). Also

$$
\varphi_{d}(a \wedge b)=d *(a \wedge b)=(d * a) \wedge(d * b)=\varphi_{d}(a) \wedge \varphi_{d}(b)
$$

by (3.7). Thus, φ_{d} is an endomorphism of L.
We are ready to prove the main result of this section

Theorem 3.10. Let L be a finite Brouwerian semilattice. Then L has SEKP.
Proof. Let θ be a congruence of $L, F=[1] \theta$. As L is finite, there is $d \in L$ such that $F=[d)$. We know that $\varphi_{d} \in \operatorname{End}(L)$ by Lemma 3.9. Also, $a \leqslant d * a=\varphi_{d}(a)$ holds for every $a \in L$ by (3.3), thus φ_{d} satisfies condition (iii) of Theorem 3.5 and it is a strong endomorphism of L.

We know that $d * f=1$ is equivalent to $d \leqslant f$, which means that $F=[d)=$ $\varphi_{d}^{-1}(1)$ and $\operatorname{ker}\left(\varphi_{d}\right)=\theta$. Therefore φ_{d} is a strong endomorphism of the Brouwerian semilattice L such that $\operatorname{ker}\left(\varphi_{d}\right)=\theta$.

The signature of the universal algebra changes the notion of strong endomorphisms. Let us give a simple example. Let $L=\{0, a, b, 1\}$ be such that $0<a, b<1$ and a, b are incomparable. We can consider it as the meet-semilattice $L_{\mathrm{ms}}=(L, \wedge)$ and as the Brouwerian semilattice $L_{\mathrm{bs}}=(L, \wedge, *, 1)$.

The meet-semilattice L_{ms} has 7 congruences-trivial, universal and congruences (written as partitions) $c_{1}=\{\{0, a\},\{b, 1\}\}, c_{2}=\{\{0, b\},\{a, 1\}\}, c_{3}=$ $\{\{0, a\},\{b\},\{1\}\}, c_{4}=\{\{0, b\},\{a\},\{1\}\}, c_{5}=\{\{0, a, b\},\{1\}\}$. Let $\varphi: L \rightarrow L$ be a map which maps $0, a \mapsto 0 ; b, 1 \mapsto b$. The map φ is an endomorphism of L_{ms} and by a routine check, it is a strong endomorphism of L_{ms}. That means that as a map, φ preserves also all congruences of the Brouwerian semilattice L_{bs} (trivial, universal, c_{1}, c_{2}), but it is not an endomorphism of L_{bs}.

Let $(L, \vee, \wedge, *, 1)$ be a Brouwerian algebra. Then the join operation \vee is fully determined by \wedge, but in general there is no term in the language of \wedge, $*$ defining \vee. But Katriňák in [20] proved that if $(L, \vee, \wedge, *, 1)$ is a relative Stone algebra, than the join operation \vee is defined by the formula

$$
\begin{equation*}
x \vee y=(x * y) * y \wedge(y * x) * x . \tag{3.10}
\end{equation*}
$$

This fact allows us to formulate:

Corollary 3.11. Let L be a nontrivial finite relative Stone algebra. Then it has SEKP.

Proof. Using results and denotation from Lemma 3.9 we know that φ_{d} is an endomorphism preserving operations $*$ and \wedge and from formula (3.10) we see that

$$
(\forall a, b \in L) \quad \varphi_{d}(a \vee b)=\varphi_{d}(a) \vee \varphi_{d}(b),
$$

so that φ_{d} is the endomorphism of the relative Stone algebra L which is strong and has $[d)$ as its kernel.

Corollary 3.11 was proved also in [12], but using a complicated induction via the chain of equational classes of relative Stone algebras, and the proof did not give the description of needed strong endomorphisms.

The ternary term $\mu(x, y, z)=(x * y) * z \wedge(z * y) * x \wedge(z * x) * x$ satisfies $\mu(x, z, z)=\mu(x, y, x)=\mu(z, z, x)=x$ (see [22]) and therefore the variety of Brouwerian semilattices is arithmetical, and therefore for a Brouwerian semilattice, Con (L) is a distributive lattice. Also every Brouwerian algebra L (having a lattice as a reduct) has Con (L) distributive. This means that Brouwerian semilattices and also Brouwerian algebras have factorable congruences. By [12], Corollary 3.2 the direct sum of a family of finite Brouwerian semilattices (or of a family of finite relative

Stone algebras) has SEKP, so that we have nontrivial infinite examples of Brouwerian semilattices and Brouwerian algebras which have SEKP (see [12] for details).

It is known that a subdirectly irreducible Brouwerian algebra L which is not a relative Stone is a Brouwerian algebra, which is not a chain and it has one coatom (which is the largest element of $L \backslash\{1\}$). It means that finite subdirectly irreducible Brouwerian not relative Stone algebra L has a coatom and the largest join reducible element; we shall call this element critical element of L. It is proved in [12] that a finite subdirectly irreducible Brouwerian algebra which is not relative Stone does not have EKP (which means it does not have SEKP).

Lemma 3.12. Let L be a finite Brouwerian algebra which is not relative Stone. Then
(1) there exist $\bar{d} \in L$ such that
(a) $\varphi_{\bar{d}} \notin \operatorname{End}(L)$,
(b) $\operatorname{Im}\left(\varphi_{\bar{d}}\right)$ is not a subalgebra of L,
(2) the operation \vee of L is not a term function in functional symbols $\wedge, *, 1$.

Proof. (1a): Let L be a subdirect product of subdirectly irreducible algebras L_{1}, \ldots, L_{n}. At least one of L_{1}, \ldots, L_{n} is not relative Stone; we shall assume that L_{1} is not relative Stone and that L is a subalgebra of $L_{1} \times \ldots \times L_{n}$. Let d be a critical element of L_{1}. There are elements $a, b \in L_{1}, a \neq b$ such that d covers a and b. We have $a \vee b=d$ and using formula (3.3) we see that $d * a=a$ and $d * b=b$. L is a subdirect product and therefore there are elements $a_{2}, b_{2} \in L_{2}, \ldots, a_{n}, b_{n} \in L_{n}$ such that $\bar{a}=\left(a, a_{2}, \ldots, a_{n}\right)$ and $\bar{b}=\left(b, b_{2}, \ldots, b_{n}\right)$ are elements of L.

Denote $\bar{d}=\bar{a} \vee \bar{b}$. Then $\bar{d} \in L$. We have $\varphi_{\bar{d}}(\bar{d})=\mathbf{1}=(1, \ldots, 1)(\mathbf{1}$ denotes the top element of L here). Let $\pi_{1}: L \rightarrow L_{1}$ be the projection homomorphism onto the first coordinate. We have

$$
\pi_{1}\left(\varphi_{\bar{d}}(\bar{a} \vee \bar{b})\right)=\pi_{1}\left(\varphi_{\bar{d}}(\bar{d})\right)=1
$$

But clearly,

$$
\begin{equation*}
\pi_{1}\left(\varphi_{\bar{d}}(\bar{a}) \vee \varphi_{\bar{d}}(\bar{b})\right)=\pi_{1}\left(\varphi_{\bar{d}}(\bar{a})\right) \vee \pi_{1}\left(\varphi_{\bar{d}}(\bar{b})\right)=d * a \vee d * b=a \vee b=d \tag{3.11}
\end{equation*}
$$

which means that $\varphi_{\bar{d}}$ does not preserve joins and it is not an endomorphism of L.
(1b): Let d be a critical element of L_{1}, and \bar{d} be as defined within the proof of (1a). Let $x \in L_{1}, x \geqslant d$. Then $d * x=1 \neq d$. Let $x \in L_{1}, x<d$. Then there is an element $a \in L_{1}$ which is covered by d and $x \leqslant a$. We have $d * a=a$, thus $d * x \leqslant d * a=a \neq d$ by (3.9). It means $d \notin \operatorname{Im}\left(\varphi_{d}\right)$ and for any $c_{2}, \ldots, c_{n},\left(d, c_{2}, \ldots, c_{n}\right) \notin \operatorname{Im}\left(\varphi_{\bar{d}}\right)$. Together with (3.11) this means that $\operatorname{Im}\left(\varphi_{\bar{d}}\right)$ is not a subalgebra of L.
(2): The map $\varphi_{\bar{d}}$ preserves operations $\wedge, *$ and also 1 due to Lemma 3.9. As $\varphi_{\bar{d}}$ does not preserve the operation V , there does not exist a term function $t(x, y)$ in functional symbols $\wedge, *, 1$ such that $x \vee y=t(x, y)$ for all $x, y \in L$.

So, the set of greatest elements of blocks of the congruence $\theta_{[\bar{d})}$ is not the subalgebra of L. We shall finish this section with two examples.

Let L be a Brouwerian (not relative Stone) algebra as given in Figure 1.

L
Figure 1.

Algebra L is a subdirect product of L_{1}^{2} with $\mathbf{c}=(d, d), \mathbf{d}=(1, d), \mathbf{e}=(d, 1)$. Maps $\varphi_{\mathbf{x}}$ are (strong) endomorphisms of a Brouwerian algebra L for $\mathbf{x} \in L \backslash\{\mathbf{c}, \mathbf{d}, \mathbf{e}\}$. As we know by Lemma 3.12 (or by an easy check), φ_{c} is not an endomorphism, but φ_{d} and $\varphi_{\mathbf{e}}$ are not endomorphisms of L as well, for example, $\varphi_{\mathbf{e}}$ maps $\mathbf{a} \mapsto \mathbf{a} ; \mathbf{b} \mapsto \mathbf{b}$ and $\mathbf{c} \mapsto \mathbf{d}$, hence $\varphi_{\mathbf{e}}$ does not preserve joins. It is easy to check that the map φ which maps $\mathbf{0} \mapsto \mathbf{c} ; \mathbf{a} \mapsto \mathbf{d} ; \mathbf{b} \mapsto \mathbf{e} ; \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{1} \mapsto \mathbf{1}$ is a strong endomorphism of L with $\operatorname{ker}(\varphi)=\theta_{[\mathbf{c})}$. But for example $L / \theta_{[\mathbf{e})}$ is in fact isomorphic to a subalgebra $\{\mathbf{0}, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{1}\}$ (and that is the only subalgebra of L to which it is isomorphic) and there is only one endomorphism φ (which maps $\mathbf{0} \mapsto \mathbf{0}$; $\mathbf{a} \mapsto \mathbf{a} ; \mathbf{b} \mapsto \mathbf{b} ; \mathbf{c}, \mathbf{d} \mapsto \mathbf{c}$; $\mathbf{e}, \mathbf{1} \mapsto \mathbf{1}$) whith $\theta_{[\mathbf{e})}=\operatorname{ker}(\varphi)$, but this endomorphism is not strong, as $\varphi(\mathbf{d})=\mathbf{c}$, therefore φ does not satisfy condition (iii) of Theorem 3.5. It means that L does not have SEKP, but it has EKP.

Let L be a Brouwerian (not relative Stone) algebra as given in Figure 2.

Figure 2.

Algebra L is a subdirect product of L_{1}^{2} with $\mathbf{c}=(d, d)$. Maps $\varphi_{\mathbf{x}}$ are (strong) endomorphisms of a Brouwerian algebra L for $\mathbf{x} \in L \backslash\{\mathbf{c}\}$. As we know by Lemma 3.12 (or by an easy check), φ_{c} is not an endomorphism of L, but it is easy to check that the map φ which maps $\mathbf{0} \mapsto \mathbf{d} ; \mathbf{a} \mapsto \mathbf{e} ; \mathbf{b} \mapsto \mathbf{f} ; \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{1} \mapsto \mathbf{1}$ is a strong endomorphism of L with $\operatorname{ker}(\varphi)=\theta_{[\mathbf{c})}$. Thus, L has SEKP.

4. Dual generalized Boolean algebras

We know that all finite relative Stone algebras have SEKP and we also know that there are infinite relative Stone algebras which possess this property, but that is not the full characterization of relative Stone algebras with SEKP. The purpose of this section is to give a full characterization of relative Stone algebras within one subvariety of the variety of all relative Stone algebras.

From the point of view of Brouwerian algebras, DGBA's are relative Stone algebras which form a subvariety S_{2} of the variety of relative Stone algebras generated by a Brouwerian algebra $\{0,1\}$ (DGBA's are relative Stone algebras which satisfy the identity $x * y \vee y * z=1$), for more details see [19] and [17]. For example, the full duality for the category of DGBA's is described in [4].

As it is shown in [19], a distributive lattice with a top element 1 in which every principal filter [a) is a Boolean lattice (a distributive lattice in which all elements have complements) is a Brouwerian algebra. We shall use the following definition:

Definition 4.1. A Brouwerian algebra L is a dual generalized Boolean algebra (DGBA for short) if its reduct (L, \vee, \wedge) is a distributive lattice in which every principal filter $[a)$ is a Boolean lattice.

The great importance of DGBA's lies in the fact that for a DGBA L (more precisely for a Brouwerian algebra $(L, \vee, \wedge, *, 1)$ which is DGBA), congruences of $(L, \vee, \wedge, *, 1)$ and congruences of its lattice reduct (L, \vee, \wedge) are the same, as stated in the following theorem (this is a dual form of the original result by Hashimoto [16], see also [10], Theorems 145, 146). This property of DGBA's is most important also for our purposes.

Theorem 4.2. Let $(L, \vee, \wedge, *, 1)$ be a $D G B A$. Then $\operatorname{Con}((L, \vee, \wedge, *, 1))=$ $\operatorname{Con}((L, \vee, \wedge))$ and every congruence of $\operatorname{Con}((L, \vee, \wedge))$ is of the form θ_{F} for a filter F of L. Let $\left(L^{\prime}, \vee, \wedge, 1\right)$ be a lattice such that all its congruences are of the form θ_{F} for some filter F of L^{\prime}. Then all principal filters of L^{\prime} are Boolean lattices.

We have the obvious corollary.

Corollary 4.3. Let a Brouwerian algebra $(L, \vee, \wedge, *, 1)$ be a $D G B A$. If it has SEKP, then the distributive lattice with top $(L, \vee, \wedge, 1)$ has SEKP.

Unbounded distributive lattices with a top element which have SEKP were characterized in [13] as follows:

Theorem 4.4 ([13], Theorem 2.7). Let L be an unbounded distributive lattice with a top element (which means that the top element must be preserved by homomorphisms/endomorphisms). Then L has SEKP if and only if it is isomorphic to the lattice of all cofinite subsets of a set Z.

Let Z be a set. Denote $\operatorname{Cof}(Z)=\{X \subset Z: Z \backslash X$ is finite $\}$. Clearly, $(\operatorname{Cof}(Z)$, $\cup, \cap, Z)$ is an (unbounded) distributive lattice with top element Z. The proof of Theorem 4.4 does not assure that strong endomorphisms which witness the SEKP for the lattice $(\operatorname{Cof}(Z), \cup, \cap, Z)$ of a set Z are (could be choosen as) Brouwerian algebra endomorphisms (i.e., that also the operation $*$ is preserved).

It is easy to see that the lattice of all cofinite subsets of a set Z is locally finite, i.e., all principal filters are finite (Boolean) lattices. Another way how to describe such lattices is using the notion of a direct sum of algebras with distinguished elementswe have already mentioned this construction after Corollary 3.11, but we will be more specific in this case. Clearly, a lattice of all cofinite subsets of a set Z is isomorphic to

$$
\begin{array}{r}
\sum_{i \in Z}((\{0,1\}, \vee, \wedge, 1), 1)= \\
\quad(\{f: Z \rightarrow\{0,1\} ;
\end{array}
$$

$(\{f: Z \rightarrow\{0,1\} ; f(i)=1$ for all but finitely many indices $i\}, \vee, \wedge, 1)$,
a sublattice of a lattice $\left(\{0,1\}^{Z}, \vee, \wedge, 1\right)$ with top element. $\sum_{i \in Z}((\{0,1\}, \vee, \wedge, 1), 1)$ is called a direct sum of Z copies of $(\{0,1\}, \vee, \wedge, 1)$ with distinguished elements 1 . By considering $\{0,1\}$ as a Brouwerian algebra $(\{0,1\}, \vee, \wedge, *, 1)$, the direct sum $\sum_{i \in Z}((\{0,1\}, \vee, \wedge, *, 1), 1)$ is a Brouwerian algebra, in fact a DGBA, as well.

As we have already mentioned, any direct sum of finite relative Stone algebras, it means also $\sum_{i \in Z}((\{0,1\}, \vee, \wedge, *, 1), 1)$, has SEKP by [12], Corollary 3.2.

Combining previous results we get the following theorem and corollary.
Theorem 4.5. Let a Brouwerian algebra $(L, \vee, \wedge, *, 1)$ be a $D G B A$. The following statements are equivalent:
(i) L has SEKP.
(ii) L is isomorphic to the lattice $(\operatorname{Cof}(Z), \cup, \cap, Z)$ of a set Z (considered as a Brouwerian algebra).
(iii) L is isomorphic to the direct sum $\sum_{i \in Z}((\{0,1\}, \vee, \wedge, *, 1), 1)$ for a set Z.
(iv) The sublattice $([a), \vee, \wedge)$ is a finite Boolean lattice for all $a \in L$.

Corollary 4.6. A Boolean algebra considered as a Brouwerian algebra (a $D B G A$ which has bottom element) has SEKP if and only if it is finite.

We can also prove an interesting feature of congruences of lattices which fulfill one of the conditions of Theorem 4.5.

Corollary 4.7. Let L be $(\operatorname{Cof}(Z), \cup, \cap, Z)$ for a set Z. Then all congruences of L are comonomial, it means for any $\theta \in \operatorname{Con}(L)$, every block $[x] \theta$ has the largest element.

Proof. Let $\theta \in \operatorname{Con}(L)$. L is also a Brouwerian algebra and it has SEKP as a Brouwerian algebra by Theorem 4.5. Let φ be a strong endomorphism of a Brouwerian algebra L such that $\operatorname{ker}(\varphi)=\theta$. By Theorem $4.2, \varphi$ is a strong endomorphism of a distributive lattice L, as well, and thus by [24], Lemma $2.2, \varphi$ is idempotent, $\varphi \circ \varphi=\varphi$. As $\varphi(x)=\varphi(\varphi(x))$, we see that $(x, \varphi(x)) \in \operatorname{ker}(\varphi)=\theta$, or $\varphi(x) \in[x] \theta$. We shall prove that $\varphi(x)$ is the largest element of a block $[x] \theta$. By Theorem 3.5 (iii) we know that $x \leqslant \varphi(x)$ for all $x \in L$. Now, let $y \in[x] \theta$. This means that $\varphi(y)=\varphi(x)$ and we also know that $y \leqslant \varphi(y)$, hence $y \leqslant \varphi(x)$. Therefore $\varphi(x)$ is the largest element of $[x] \theta$, as required.

This means that congruences of unbounded distributive lattices with a top element which have SEKP (all of those are DGBA's) behave also in a general case similarly to a finite case for relative Stone algebras and also that strong endomorphisms are determined uniquely, just as in a finite case for relative Stone algebras.

Acknowledgement. We thank the anonymous referee for the detailed review and suggestions which helped to improve our presentation.

References

[1] T.S. Blyth, J. Fang, H. J. Silva: The endomorphism kernel property in finite distributive lattices and de Morgan algebras. Commun. Algebra 32 (2004), 2225-2242.
zbl MR doi
[2] T.S. Blyth, J. Fang, L.-B. Wang: The strong endomorphism kernel property in distributive double p-algebras. Sci. Math. Jpn. 76 (2013), 227-234.
zbl MR doi
[3] T.S. Blyth, H. J. Silva: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694.
[4] B. A. Davey: Dualities for equational classes of Brouwerian algebras and Heyting alge-
bras. Trans. Am. Math. Soc. 221 (1976), 119-146.
[5] G. Fang, J. Fang: The strong endomorphism kernel property in distributive p-algebras.
zbl MR doi

Southeast Asian Bull. Math. 37 (2013), 491-497.
[6] J. Fang: The strong endomorphism kernel property in double MS-algebras. Stud. Log. 105 (2017), 995-1013.

Zbl MR
[7] J. Fang, Z.-J. Sun: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401.
[8] J. Fang, Z. J. Sun: Finite abelian groups with the strong endomorphism kernel property. Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082.
zbl MR doi
[9] H. Ghumashyan, J. Guričan: Endomorphism kernel property for finite groups. Math. Bohem. 147 (2022), 347-358.
zbl MR doi
[10] G. Grätzer: Lattice Theory: Foundation. Birkhäuser, Basel, 2011.
zbl MR doi
[11] J. Guričan: A note on the endomorphism kernel property. JP J. Algebra Number Theory Appl. 33 (2014), 133-139.
[12] J. Guričan: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258.
[13] J. Guričan, M. Ploščica: The strong endomorphism kernel property for modular palgebras and distributive lattices. Algebra Univers. 75 (2016), 243-255.

Zbl MR doi
[14] E. Halušková: Strong endomorphism kernel property for monounary algebras. Math. Bohem. 143 (2018), 161-171.
[15] E. Halušková: Some monounary algebras with EKP. Math. Bohem. 145 (2020), 401-414.
[16] J. Hashimoto: Ideal theory for lattices. Math. Jap. 2 (1952), 149-186.
zbl MR doi
[17] T. Hecht, T. Katriňák: Equational classes of relative Stone algebras. Notre Dame J. Formal Logic 13 (1972), 248-254.

MR do

Zbl MR doi
[18] T. Katriñák: Die Kennzeichnung der distributiven pseudokomplementären Halbverbände. J. Reine Angew. Math. 241 (1970), 160-179. (In German.)
zbl MR doi
[19] T. Katriňák: Remarks on the W. C. Nemitz's paper 'Semi-Boolean lattices'. Notre Dame J. Formal Logic 11 (1970), 425-430.

Zbl MR doi
[20] T. Katriňák: Relativ Stonesche Halbverbände sind Verbände. Bull. Soc. R. Sci. Liège 40 (1971), 91-93. (In German.)

Zbl MR
[21] T. Katriñák: Die Kennzeichnung der beschränkten Brouwerschen Verbände. Czech. Math. J. 22 (1972), 427-434. (In German.)
zbl MR doi
[22] P. Köhler: Brouwerian semilattices. Trans. Am. Math. Soc. 268 (1981), 103-126.
[23] W. C. Nemitz: Implicative semi-lattices. Trans. Am. Math. Soc. 117 (1965), 128-142.
zbl MR doi
[24] M. Ploščica: Affine completions of distributive lattices. Order 13 (1996), 295-311.
zbl MR doi

Authors' addresses: Jaroslav Guričan (corresponding author), Comenius University Bratislava, Šafárikovo námestie 6, 81499 Bratislava, Slovakia, e-mail: gurican@ fmph.uniba.sk; Heghine Ghumashyan, European University, 10 Davit Anhaght Street, Yerevan 0037, Armenia, e-mail: hgumashyan@mail.ru.

